Annual Monitoring Report

Monitoring Year 1 of 7

FINAL

Poplin Ridge Stream Restoration Project NCDMS Contract No.: 004672 NCDMS Project No.: 95359

Union County, NC

Data Collected: October – December 2015

Date Submitted: January 2016

Submitted to:
North Carolina Division of Mitigation Services
NCDEQ-DMS, 1652 Mail Service Center Raleigh NC 27699-1652

This Page Intentionally Left Blank

Prepared for:

302 Jefferson Street, Suite 110 Raleigh, North Carolina 27605

Prepared by:

balance through proper planning

37 Haywood Street, Suite 100 Asheville, North Carolina 28801

This Page Intentionally Left Blank

Contents

1.0	Project Summary	1
1.1.		
1.2.	·	
1.3.		
1.4.		
2.0	Methods	
3.0	References	
Appen	dix A General Tables and Figures	
	dix B Visual Assessment Data	
	dix C Vegetation Plot Data	
	dix D Stream Geomorphology Data	
	dix E Hydrologic Data	

This Page Intentionally Left Blank

1.0 PROJECT SUMMARY

1.1. Goals and Objectives

The project goals address stressors identified in the TLW, and include the following:

- Nutrient removal,
- Sediment removal,
- Reducing runoff from animal operations,
- Filtration of runoff, and
- Improved aquatic and terrestrial habitat.

The project goals will be addressed through the following project objectives:

- Establishing riparian buffer areas adjacent to CAFOs.
- Converting active farm fields to forested buffers,
- Stabilization of eroding stream banks,
- Reduction in streambank slope,
- Restoration of riparian buffer bottomland hardwood habitats, and
- Construction of in-stream structures designed to improve bedform diversity and trap detritus.

1.2. Success Criteria

The success criteria for the Poplin Ridge Stream Restoration Site follows accepted and approved success criteria presented in the USACE Stream Mitigation Guidelines and subsequent NCDMS and agency guidance. Specific success criteria components are presented below.

1.2.1. Stream Restoration

Bankfull Events - Two bankfull flow events must be documented within the seven-year monitoring period. The two bankfull events must occur in separate years. Otherwise, stream monitoring will continue until two bankfull events have been documented in separate years. Bankfull events will be documented using crest gauges, auto-logging crest gauges, photographs, and visual assessments for evidence of debris wrack lines.

Cross-Sections - There should be little change in as-built cross-section. If changes do take place, they should be evaluated to determine if they represent a movement toward a less stable condition, or minor changes that represent an increase in stability.

Bank Pin Arrays - Bank pin arrays will be used as a supplemental method to monitor erosion on selected meander bends. Bank pin exposure will be recorded at each monitoring event.

Digital Image Stations- Digital images will be used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures. Longitudinal images should indicate the absence of developing bars within the channel or an excessive increase in channel depth. Lateral images should not indicate excessive erosion or continuing degradation of banks over time. A series of images over time should indicate successional maturation of riparian vegetation.

1.2.2.Vegetation

Interim measures of vegetative success for the site will be the survival of at least 320 three year old trees per acre at the end of Year 3 and 260 five-year old trees per acre at the end of Year-5. The final vegetative success criteria will be the survival of 210 trees per acre at the end of Year 7.

1.3. Project Setting and Background

The Poplin Ridge Stream Restoration Site (Site) encompasses approximately 27.17 acres, of which 4.69 acres are wooded and the remaining 22.48 acres are agricultural fields and pastures. The western and eastern systems, UT1 and UT2 respectively, consist of unnamed tributaries to the East Fork of Stewarts Creek. UT1 is divided into seven reaches and UT2 is divided into five reaches. The Site is located within the Yadkin River Watershed (NCDWR sub basin 03-07-14 and HUC 03040105070050) in Union County, North Carolina, approximately six miles north of Monroe. The Site is located within the Stewarts Creek Watershed, a NCDMS targeted local watershed.

1.4. Project Performance

Monitoring Year 1 (MY1) data was collected from October to December 2015. Monitoring activities included visual assessment of all reaches and the surrounding easement, 17 permanent photo stations, 13 permanent vegetation monitoring plots, 29 cross-sections, and 15 pebble counts.

Summary information and data related to the occurrence of items such as beaver or easement encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly the Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on NCDMS' website (http://deq.nc.gov/about/divisions/mitigation-services). All raw data supporting the tables and figures in the appendices is available from NCDMS upon request.

1.4.1.Vegetation

Visual assessment of the site indicates that herbaceous vegetation has become well established; however, three bare areas covering a total of 0.04 acres were associated with recent high-flow events that scoured parts of the floodplain (Table 6, Figure 2). Growth rate, vigor, and planted woody stem density outside of the permanent vegetation monitoring plots were was difficult to assess during leaf-off conditions occurring during the monitoring period. These will be assessed during leaf-on conditions in MY2. Low density and bare areas will be replanted during the spring of 2016. Additionally, eight areas of invasive-exotic vegetation covering a total of 1.81 acres were noted within the easement (Table 6, Figure 2). A majority of the invasive-exotic vegetation was previously cut privet that is now re-sprouting. Treatment of these areas is scheduled for MY2 (2016).

Monitoring of permanent vegetation plots (n = 13) was completed during October 2015. Summary tables and photographs associated with MY1 monitoring can be found in Appendix C. With the exception of Plots 2 and 10, MY1 monitoring data indicates that all vegetation monitoring plots are on track to meet the MY3 interim success criteria of 320 planted stems per acre. Planted stem densities among the plots were found to range from 0 to 1,093 planted stems per acre with a mean of 663 stems per acre across all plots. When volunteer stems are included, densities ranged between 121 and 1,821 total stems per acre with a mean of 753 stems per acre across all plots. A total of 18 plant species were documented within the monitoring plots. Low stem densities in plots 2 and 10 are likely attributed to a combination of landscape position and a dry summer following planting.

1.4.2. Stream Geomorphology

Visual assessment of the stream channel was performed in order to document signs of instability, such as eroding banks, structural instability, or excessive sedimentation. Areas of bank scour, bed aggradation, and bed degradation were noted on reaches UT1-2, UT 1-B, and UT2-A (Table 5 and Figure 2). One stressed structure was noted on UT2-A at STA 4+00, near the confluence of UT2-A and UT2-2. This structure is considered stressed due to one dislodged boulder at the invert; however, the structure is still holding grade and providing habitat. It is likely that high flows post-construction affected the structure. Due to the position of the dislodged boulder, it is anticipated that the structure will stabilize with time. RES will monitor the structure during future visits to assess the integrity of the structure and the need for any repair. All other structures are intact and performing as designed.

Geomorphic data for MY1 was collected during October 2015. Cross-section plots and summary tables related to stream morphology are located in Appendix D. The MY1 stream morphology data indicate that, in general, the stream is stable. Several small changes were noted in the cross-section dimensions; however, these are relatively minor and do not exceed expected adjustments in channel form, particularly for the first year of monitoring. Deposits of fine material led to decrease in channel depths of 0.1 to 0.3 feet at a majority of cross-sections. At riffle cross-section XS-4, deposition along the left descending bank decreased the bankfull width by 2.2 feet, causing a reduction in the W/D ratio and cross-sectional area. The only other noticeable changes to take place at cross-sections between baseline conditions and MY1 were located within the restored section of the pond in Reach UT2-2. Settling within the pond has led to an increase in bankfull widths at XS-1 and XS-2, which subsequently led to increased W/D ratios and max depth.

Bank pin arrays indicate that slight erosion occurred during MY1 at array numbers 4, 5, and 6 at the rate of 0.37 feet/year, 0.31 feet/year, and 0.24 feet/year respectively. Bank pin array data will be collected and analyzed in future monitoring years to monitor any trends of bank erosion.

Substrate monitoring was performed during MY1. Pebble count D₅₀ fell into the medium gravel range for UT1-1, silt to very coarse sand for UT1-2, coarse gravel for UT1-3, coarse sand to fine gravel for UT1-4, fine sand for UT1-A, coarse gravel for UT1-B, medium gravel for UT1-C, and silt to very fine sand for UT2-3, UT2-4, and UT2-A. The channel substrate will be monitored in future years for shifts in particle size distributions.

Overall, documented shifts in stream morphology do not exceed expectations between MY0 and MY1 as the newly reconstructed stream adjusts to conditions at the site. The project is meeting success criteria regarding stable dimension as well as substrate and sediment transport.

1.4.3.Stream Hydrology

Since project completion in April 2015, two bankfull events have been recorded on both UT1 and UT2. Based on water level logger data (Table 13, Figure 3), the dates of the two events were 8/19/2015 and 10/3/2015.

2.0 METHODS

For MY1, visual assessments were performed during the morphologic and vegetation data collection, and at the end of the monitoring year. For future monitoring years, visual assessment of the project will be performed at the beginning and end of the monitoring year. Permanent photo station photos were also collected during the morphologic and vegetation collection; however, for future monitoring year's permanent photo station photos will be taken during the initial visual assessment during leaf-off

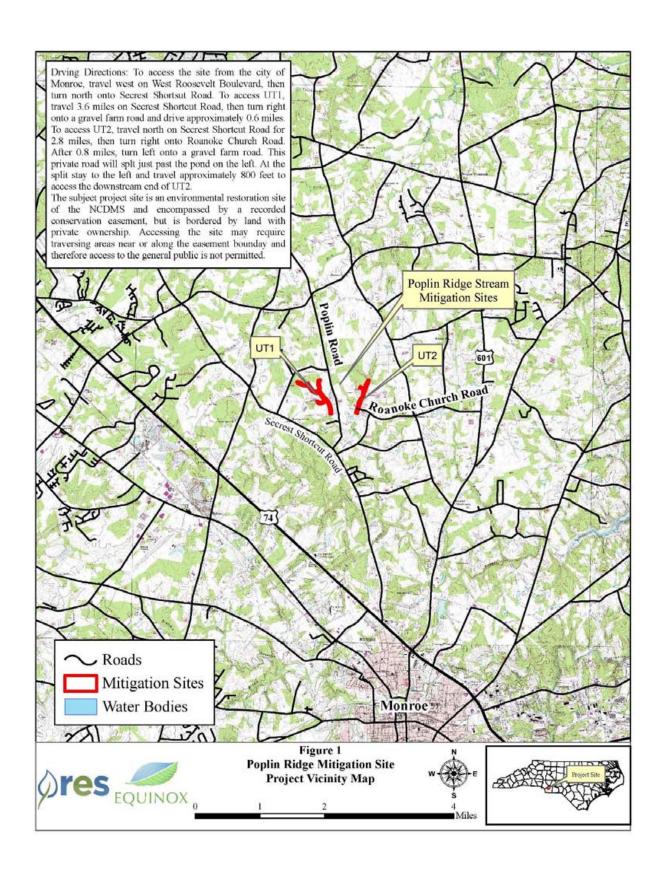
conditions. Photos of vegetation or stream problem areas not revealed in the permanent photo station images also were taken.

Geomorphic measurements were taken during low flow conditions using a Nikon NPR 332 Total Station. Three-dimensional coordinates associated with each cross-section data were collected in the field and geo-referenced (NAD83 State Plane feet FIPS 3200). Morphological data was limited to 29 cross-sections. Survey data were imported into CAD, ArcGIS, and Excel for data processing and analysis. Channel substrate was characterized using a Wolman Pebble Count as outlined in Harrelson et al. (1994) and processed using Microsoft Excel.

Vegetation success is being monitored at 13 permanent monitoring plots. Vegetation monitoring follows the CVS-EEP Level 2 Protocol for Recording Vegetation, version 4.2 (Lee et al. 2008) and includes analysis of species composition and density of planted specimens. Data is processed using the CVS data entry tool. In the field, the four corners of each plot were permanently marked with rebar and photos of each plot are taken from the origin each monitoring year.

Precipitation data was collected using an Onset HOBO Data Logging Rain Gauge. Bankfull events were documented with manual and auto logging crest gauges, which were installed within each of the following reaches - UT1-2, UT1-4, and UT2-3. Crest gauge data will be downloaded during quarterly site visits. The three auto logging crest gauges are Onset HOBO Water Level Data Loggers. The data recorded from the HOBO Water Level Data Loggers are processed using HOBOware and analyzed using Microsoft Excel. The height of the cork line was recorded and cross-referenced with known bankfull elevations at each manual crest gauge.

3.0 REFERENCES


Environmental Banc & Exchange. 2014. Poplin Ridge Stream Restoration Project Final Mitigation Plan. North Carolina Ecosystems Enhancement Program, Raleigh.

Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. http://cvs.bio.unc.edu/methods.htm; accessed November 2008.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado.

Appendix A General Tables and Figures

This Page Intentionally Left Blank

								mponents and M Stream Restorat								
								Aitigation Credits								
							N	augation Credits					Nitrog	en	Phos	phorous
		Stream			D:	parian Wetland		Non-riparian We	tland	Buffer			Nutrient Offset			ent Offset
Type		R	RE		R		RE	R R	RE		Builei		Nutrient	Jiiset	Nutric	ili Olisei
Totals	6,1		238		N/A		N/A	N/A	N/A		N/A		N/A			N/A
							D.									
		ı					Pi	roject Components	Ann	roach	Restoration -					Т
			As-l	Ruilt		Existing			(PI, PI		or-					
Project Comp	onent -or-								(1.1,1.	11 (1(.)	Restoration	Restoration	Footage or Acreage	Mit	igation Ratio	SMUs
Reach	ID			ocation (LF)			Footage/Acreage				Equivalent					
UT1				o 6+92		572			Preser		RE		572		1:5	114
UT1				0 12+58			566 1,284		F		R R		566 1,178		1:1.5	377
	UT1-2 12+58 to 24+96 UT1-3 24+96 to 34+50						1,284		F		R		893		1:1	1,178 893
UTI				o 46+73			1,252		E		R		1,223		1:1.5	815
UTI			0+73 t				197		E		R		216		1:1.5	144
UT1			0+09 t				620		Preser		RE		620		1:5	124
UTI				11+45			512		E		R		455		1:1.5	303
UT1	-C		1+21 to	10+01			883		E	ΞI	R		880		1:1.5	586
UT2	-1		0+00 t	o 4+90		490			Е	П	R		490		1:2.5	196
UT2	-2		4+90 to	13+97		875			F	PI	R		847		1:1	847
UT2	-3		13+97 t	o 19+18		495			F	PI	R		521		1:1.5	347
UT2	-4		19+18 t	o 22+07	270				F	PI	R		257		1:1	257
UT2	-A		0+45 t	o 5+06			365		Е	Ш	R		461		1:2.5	184
							Con	nponent Summation								
		Str	ream			Riparian Wetl			n-riparian Wet	land		Buffer			Upland	
Restoration		(lines	r feet)			(acres)			(acres)			(square feet)			(acres)	
Level		(iiiici	u rect)						(ucres)			(squire reer)			(ueres)	
D		2	696			Riverine	Non-River	rine								
Restoration Enhancement																
I		3,	340													
Enhancement		9	51													
II Creation																
Preservation		1,	192													
High Quality																
Preservation																
								BMP Elements								
Element		Location		-		Purpose/Funct	ion						Notes			
				l				BMP Elements	L							
				BR = Biore	tention Cell;	SF = Sand Filter; SW = Sto	rmwater Wetland;		Pond; DDP = 1	Dry Detenti	on Pond; FS = Fi	ilter Strip; S = G	rassed			
								= Natural Infiltration A				-				

Table 2. Project Activity and Reporting History Poplin Ridge Stream Restoration Project								
Activity or Report	Data Collection Complete	Completion or Delivery						
Mitigation Plan	NA	Jul-14						
Final Design – Construction Plans	NA	Oct-14						
Construction Completed	Apr-15	Apr-15						
Site Planting Completed	Apr-15	Apr-15						
Baseline Monitoring Document (Year 0 Monitoring – baseline)	Apr-15	Jul-15						
Year 1 Monitoring	Dec - 15	Jan - 16						
Year 2 Monitoring								
Year 3 Monitoring								
Year 4 Monitoring								
Year 5 Monitoring								
Year 6 Monitoring								
Year 7 Monitoring								

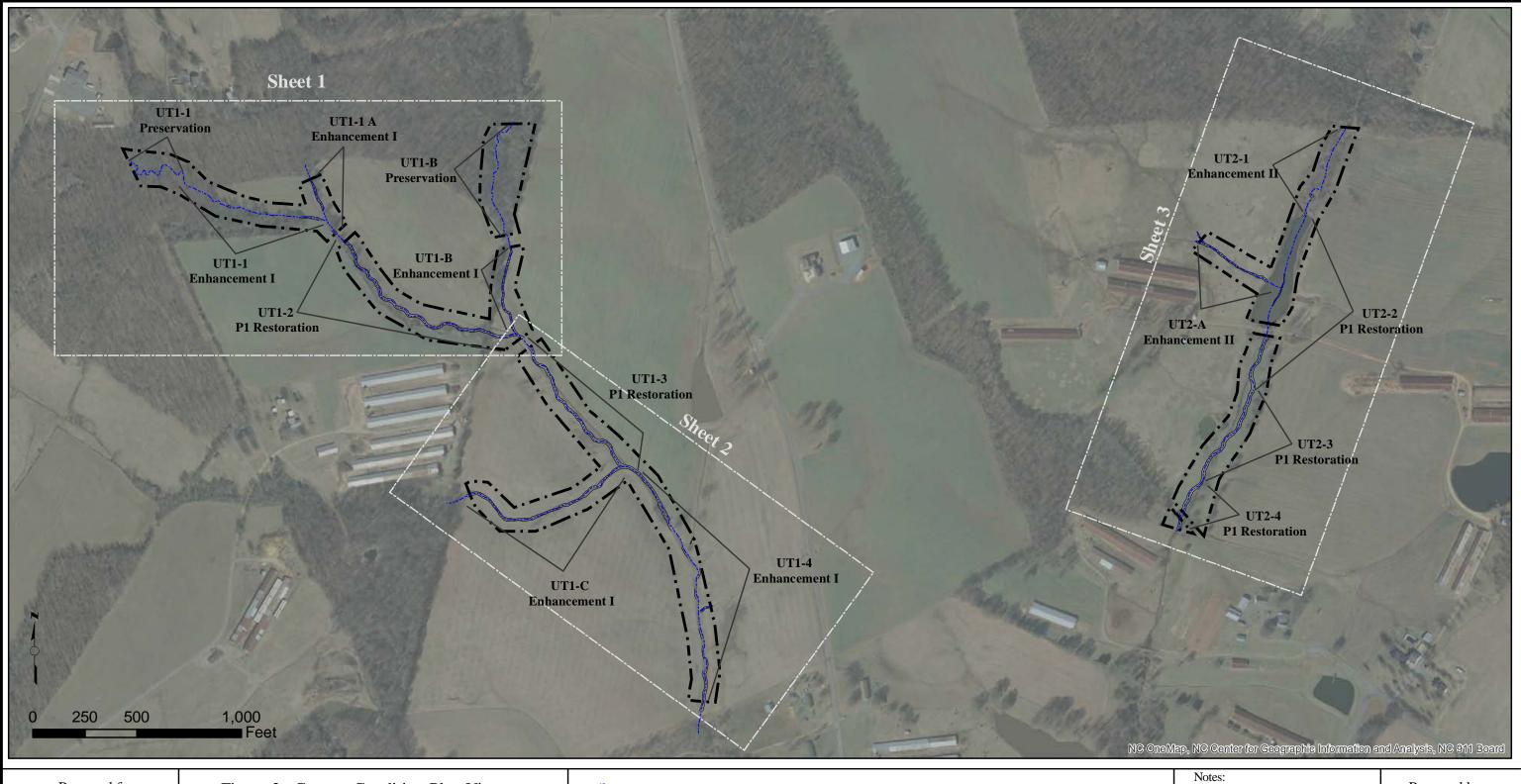
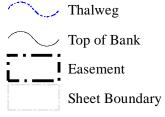

	Project Contacts Table Stream Restoration Project
Designer	WK Dickson and Co., Inc.
	720 Corporate Center Drive
	Raleigh, NC 27607
	(919) 782-0495
	Frasier Mullen, PE
Construction Contractor	Wright Contracting
	PO Box 545
	Siler City, NC 27344
	(919) 663-0810
	Joseph Wright
Planting Contractor	Resource Environmental Solutions, LLC
	302 Jefferson Street, Suite 110
	Raleigh, NC 27605
	(919) 209-1061
	David Godley
Seeding Contractor	Wright Contracting
	PO Box 545
	Siler City, NC 27344
	(919) 663-0810
	Joseph Wright
Seed Mix Sources	Green Resource
Nursery Stock Suppliers	Arbogen, NC Forestry Services Nursery
Full Delivery Provider	Resource Environmental Solutions, LLC
	302 Jefferson Street, Suite 110
	Raleigh, NC 27605
	(919) 209-1061
Project Manager:	Daniel Ingram
Monitoring Performers (MY0)	Resource Environmental Solutions, LLC
	302 Jefferson Street, Suite 110
	Raleigh, NC 27605
	(919) 209-1061
Project Manager:	Brian Hockett, PLS
Monitoring Performers (MY1)	Equinox
	37 Haywwod Street, Suite 100
	Asheville, NC 28801
Project Manager:	Hunter Terrell (828) 253-6856

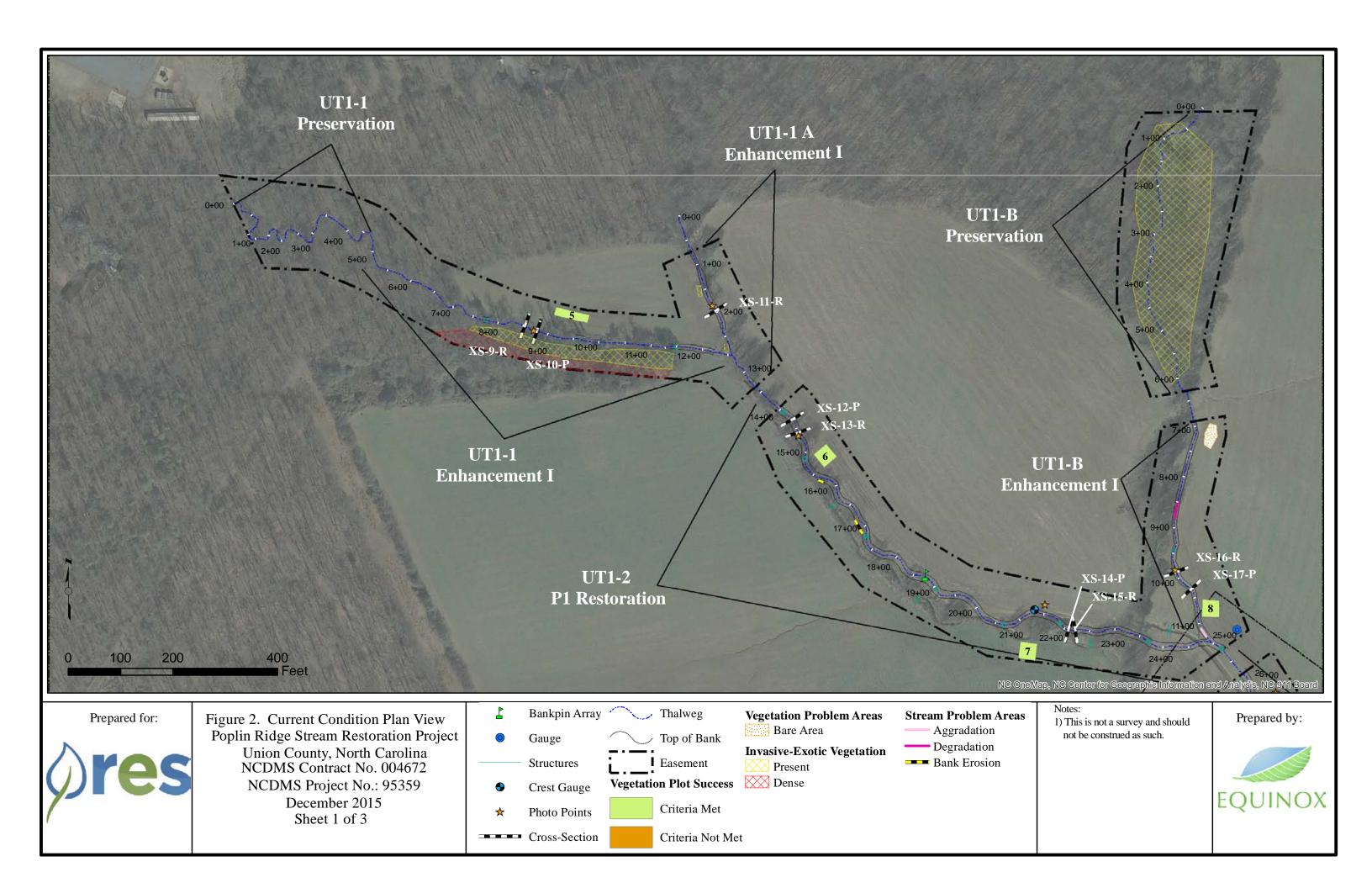
Table 4. Project Information Poplin Ridge Stream Restoration Project											
Project Name			n Ridge Strean	Restoration I	Project						
County			Un	ion							
Project Area (acres)	27.17										
Project Consultation (legitude and legitude)	UT1: 35° 03' 15.97" N 80° 34' 21.64" W										
Project Coordinates (latitude and longitude)		UT2:	35° 03' 17.99"	N 80° 33' 46.7	7" W						
Proj	ect Watershe	d Summary In	formation								
Physiographic Province			Pied	mont							
River Basin			Yac	lkin							
USGS Hydrologic Unit 8-digit			3040)105							
USGS Hydrologic Unit 14-digit			0304010	5070050							
DWQ Sub-basin 03-07-14											
Project Drainage Area (acres)	Project Drainage Area (acres) UT1: 1.14 square miles (728 acres)										
		UT	Γ2: 1.35 square		es)						
Project Drainage Area Percentage of Impervious Area			UT1 UT2								
CGIA Land Use Classification	CGIA Land Use Classification developed (open space, low density, med. density, high density), cultivated crops, pasture/hay, deciduous forest, evergreen forest										
	Reach Sumi	nary Informat	-	, ,							
Parameters	UT1-R1	UT1-R2	UT1-R3	UT1-R4	UT1-A	UT1-B					
Length of reach (linear feet)	1,138	1,178	893	1,223	216	1,075					
Valley Classification	VIII	VIII	VIII	VIII	VIII	VIII					
Drainage area (acres)	136	248	384	728	88	120					
NCDWQ stream identification score	35	22.5	30	31	35	35					
NCDWQ Water Quality Classification	WS-III	WS-III	WS-III	WS-III	WS-III	WS-III					
Morphological Description (stream type)	E4	E4	E4	C4	E4	E4/C4					
Evolutionary trend	Stage I	Stage II	Stage II	Stage V	Stage I	Stage I/III					
Underlying mapped soils	CmB	CmB, TbB2	CmB, TbB2	ChA	CmB	CmB					
		mod. well;	mod. well;	somewhat							
Drainage class	mod. well	well	well	poorly	mod. well	mod. well					
Soil Hydric status	Not Hydric	Not Hydric	Not Hydric	Partially Hydric	Not Hydric	Not hydric					
Slope	0.48%	0.70%	0.40%	0.50%	1.20%	1.80%					
FEMA classification	N/A	N/A	N/A	Zone AE	N/A	N/A					
Native vegetation community	mixed hardwood forest, cultivated	cultivated	cultivated	cultivated	cultivated	mixed hardwood forest, cultivated					
Percent composition of exotic invasive vegetation	10%	0%	0%	0%	5%	15%					

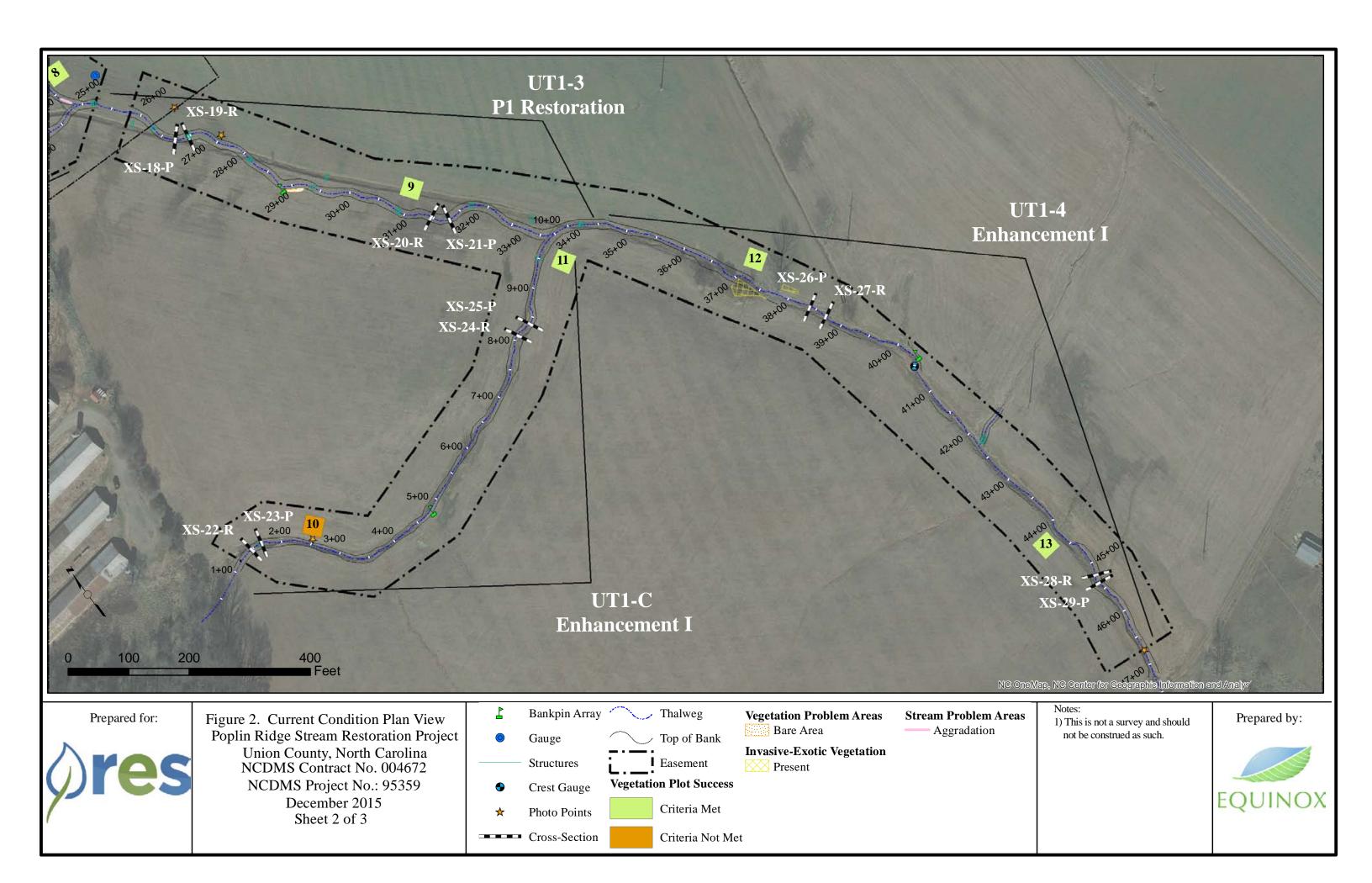
Table 4 Cont'd. Project Information Poplin Ridge Stream Restoration Project										
_	Reach Sumn									
Parameters	UT1-C	UT2-R1	UT2-R2	UT2-R3	UT2-R4	UT2-A				
Length of reach (linear feet)	880	490	847	521	257	461				
Valley Classification	VIII	VIII	VIII	VIII	VIII	VIII				
Drainage area (acres)	250	631	726	792	861	49				
NCDWQ stream identification score	35	33.5	33.5	22.5	33.5	33.5				
NCDWQ Water Quality Classification	WS-III	WS-III	WS-III	WS-III	WS-III	WS-III				
Morphological Description (stream type)	E4	C4c	N/A	E4	E4	C4				
Evolutionary trend	Stage IV	Stage VI	N/A	Stage II	Stage II	Stage IV				
Underlying mapped soils	TbB2	ChA	ChA	ChA, BaB	ChA	ChA, CmA				
Drainage class	well	somewhat poorly	somewhat poorly	somewhat poorly; well	somewhat poorly	somewhat poorly; mod. well				
		Partially	Partially	Partially	Partially					
Soil Hydric status	Not Hydric	Hydric	Hydric	Hydric	Hydric	Not Hydric				
Slope	0.80%	0.27%	0.10%	0.57%	0.31%	1.30%				
FEMA classification	N/A	Zone AE	Zone AE	Zone AE	Zone AE	N/A				
Native vegetation community	cultivated	woody cover, cultivated	cultivated	cultivated	cultivated	cultivated				
Percent composition of exotic invasive										
vegetation	0%	20%	0%	0%	0%	0%				
	Regulatory	Consideratio	ns		Γ					
Regulation	Appli	cable?	Reso	lved?	Supporting D	Occumentation				
Waters of the United States - Section 404	Y	es		es	SAW-20	012-01079				
Waters of the United States - Section 401	Y	es	Y	es	DWR#	13-1087				
Endangered Species Act	Y	es	Y	es	USFWS (C	Corr. Letter)				
Historic Preservation Act	Y	es	Y	es	SHPO (Co	orr. Letter)				
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	N	Го	N	/A	N	//A				
FEMA Floodplain Compliance	Y	es	Yes		EEP Floodplain Requirements Checklis					
Essential Fisheries Habitat	N	lo	N	/A	N/A					

Appendix B Visual Assessment Data


This Page Intentionally Left Blank

Prepared for:


Figure 2. Current Condition Plan View Poplin Ridge Stream Restoration Project Union County, North Carolina NCDMS Contract No. 004672 NCDMS Project No.: 95359 December 2015 Project Overview



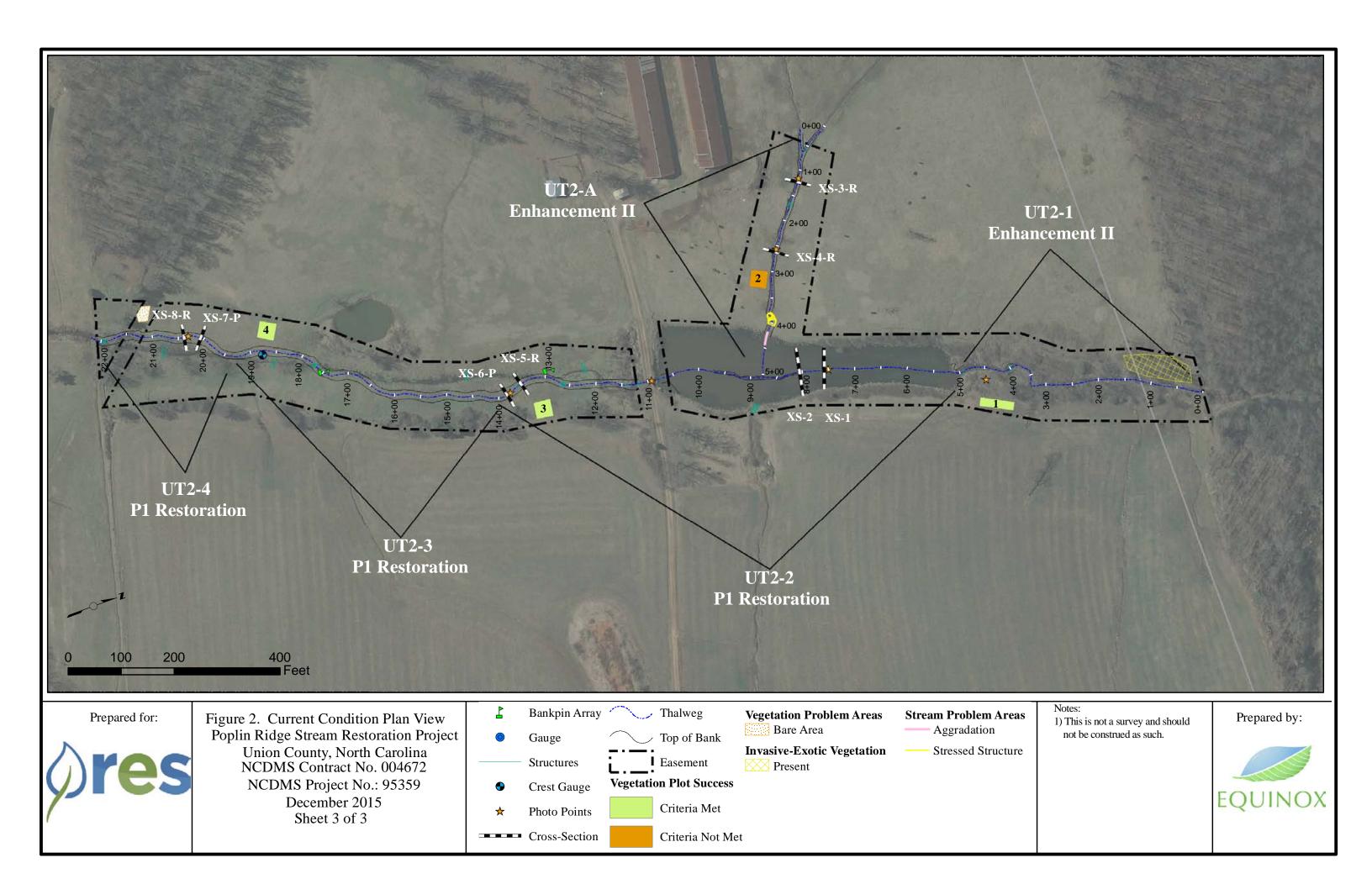

1) This is not a survey and should not be construed as such.

Table 5. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT1-1 - Enhancement I Assessed Length 566 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	-	-			-			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	-	-			-			
	Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	-	-			-			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	-	-			-			
	4. That weg I osition	2. Thalweg centering at downstream of meander bend (Glide).	-	-			-			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	N/A	N/A			N/A			
- Information Unavai	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth: Mean Bankfull Depth Ratio \geq 1.6. Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

⁻ Information Unavailable

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT1-2 - P1 Restoration Assessed Length 1,178 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	26	26			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	25	25			100%			
	Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	25	25			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	25	25			100%			
	4. Thatweg Tosition	2. Thalweg centering at downstream of meander bend (Glide).	25	25			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			2	40	98%	0	0	98%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	2	40	98%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	3	3			100%			
N/A - Item does not a	4. Habitat	Pool forming structures maintaining ~ M ax Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	3	3			100%			

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT1-3 - P1 Restoration Assessed Length 893 feet

Number Footage Adjusted % Number **Total** Number of Amount of % Stable. with with for **Major Channel** Channel Stable, Number in Metric Unstable Unstable Performing Stabilizing Stabilizing Stabilizing Performing Category **Sub-Category** Segments Woody Woody Woody As-built Footage as Intended as Intended Vegetation Vegetation Vegetation 1. Bed . Aggradation - Bar formation/growth sufficient to significantly 0 100% 1. Vertical Stability deflect flow laterally (not to include point bars). (Riffle and Run Units) 2. Degradation - Evidence of downcutting. 0 0 100% 1. Texture/Substrate - Riffle maintains coarser substrate. 2. Riffle Condition 18 18 100% 1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6). 18 18 100% 3. Meander Pool Condition 2. Length appropriate (>30% of centerline distance between tail of 18 18 100% upstream riffle and head of downstream riffle). 1. Thalweg centering at upstream of meander bend (Run). 18 18 100% 4. Thalweg Position 2. Thalweg centering at downstream of meander bend (Glide). 18 18 100% 2. Bank Bank lacking vegetative cover resulting simply from poor growth 0 1. Scoured / Eroding 0 0 100% 0 100% and/or scour and erosion. Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear 0 2. Undercut 0 100% N/A N/A N/A sustainable and are providing habitat 3. Mass Wasting Bank slumping, calving, or collapse. 0 0 100% N/A N/A N/A **Totals** 0 0 100% N/A N/A N/A 3. Engineered 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 3 3 100% Structures 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 3 3 100% 2a. Piping Structures lacking any substantial flow underneath sills or arms. 3 3 100%

N/A - Item does not apply.

4. Habitat

3. Bank Protection

base-flow.

3

3

3

3

Bank erosion within the structures extent of influence does NOT

Pool forming structures maintaining ~ Max Pool Depth : Mean

Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at

100%

100%

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT1-4 - Enhancement I Assessed Length 1,223 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	1	1			-			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	1	ı			-			
	Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	-	1			-			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	-	-			-			
	4. That weg I osition	2. Thalweg centering at downstream of meander bend (Glide).	-	-			-			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does NOT exceed 15%.	N/A	N/A			N/A			
- Information Unavai	4. Habitat	Pool forming structures maintaining \sim M ax Pool Depth: Mean Bankfull Depth Ratio \geq 1.6. Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

⁻ Information Unavailable

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT1-A - Enhancement I Assessed Length 216 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed		Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	-	1			-			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth: Mean Bankfull Depth ≥ 1.6).	-	1			-			
	Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle). 	-	-			-			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	-	-			-			
		2. Thalweg centering at downstream of meander bend (Glide).	-	-			-			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT1-B - Enhancement I Assessed Length 455 feet

Number Footage Adjusted % Number **Total** Number of Amount of % Stable. with with for **Major Channel** Channel Stable, Number in Metric Unstable Unstable Performing Stabilizing Stabilizing Stabilizing Performing Category **Sub-Category** Segments Woody Woody Woody As-built Footage as Intended as Intended Vegetation Vegetation Vegetation 1. Bed . Aggradation - Bar formation/growth sufficient to significantly 18 96% 1. Vertical Stability deflect flow laterally (not to include point bars). (Riffle and Run Units) 2. Degradation - Evidence of downcutting. 30 93% 1. Texture/Substrate - Riffle maintains coarser substrate. 2. Riffle Condition 11 11 100% 1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6). 11 11 100% 3. Meander Pool Condition 2. Length appropriate (>30% of centerline distance between tail of 11 11 100% upstream riffle and head of downstream riffle). 1. Thalweg centering at upstream of meander bend (Run). 11 11 100% 4. Thalweg Position 2. Thalweg centering at downstream of meander bend (Glide). 11 11 100% 2. Bank Bank lacking vegetative cover resulting simply from poor growth 0 1. Scoured / Eroding 0 0 100% 0 100% and/or scour and erosion. Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear 0 2. Undercut 0 100% N/A N/A N/A sustainable and are providing habitat 3. Mass Wasting Bank slumping, calving, or collapse. 0 0 100% N/A N/A N/A **Totals** 0 0 100% N/A N/A N/A 3. Engineered 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 1 1 100% Structures 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 1 1 100% 2a. Piping Structures lacking any substantial flow underneath sills or arms. 1 1 100% Bank erosion within the structures extent of influence does NOT 3. Bank Protection 1 1 100% Pool forming structures maintaining ~ Max Pool Depth : Mean 4. Habitat Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at 1 1 100% base-flow.

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT1-C - Enhancement I Assessed Length 880 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	14	14			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	13	13			100%			
	Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	13	13			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	13	13			100%			
	4. That weg Tosition	2. Thalweg centering at downstream of meander bend (Glide).	13	13			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	2	2			100%			
N/A - Item does not a	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT2-1 - Enhancement II Assessed Length 490 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	-	-			-			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	-	-			-			
	Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle). 	-	-			-			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	-	-			-			
	4. That weg Tosition	2. Thalweg centering at downstream of meander bend (Glide).	-	-			-			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT2-2 - P1 Restoration Assessed Length 847 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run Units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	5	5			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	5	5			100%			
	Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	5	5			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	5	5			100%			
	4. That weg Tosition	2. Thalweg centering at downstream of meander bend (Glide).	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	2	2			100%			
N/A - Item does not a	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT2-3 - P1 Restoration Assessed Length 521 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	8	8			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth: Mean Bankfull Depth ≥ 1.6).	8	8			100%			
	Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle). 	8	8			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	8	8			100%			
	4. That weg Tosition	2. Thalweg centering at downstream of meander bend (Glide).	8	8			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	3	3			100%			
N/A - Item does not a		Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	3	3			100%			

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT2-4 - P1 Restoration Assessed Length 257 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	4	4			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	5	5			100%			
	Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle). 	5	5			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	5	5			100%			
	4. That weg Tostuon	2. Thalweg centering at downstream of meander bend (Glide).	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	N/A	N/A			N/A			
N/A - Item does not a	4. Habitat	Pool forming structures maintaining ~ M ax Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

Table 5 cont'd. Visual Stream Morphology Stability Assessment Poplin Ridge Stream Restoration Site - UT2-A - Enhancement II Assessed Length 461 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			1	23	95%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	10	10			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth: Mean Bankfull Depth ≥ 1.6).	13	13			100%			
	Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle). 	13	13			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	13	13			100%			
	ii Thai weg Toshuon	2. Thalweg centering at downstream of meander bend (Glide).	13	13			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	5			80%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	5	5			100%			
N/A - Item does not a	L	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	5	5			100%			

Table 6. Vegetation Condition Assessment Poplin Ridge Stream Restoration Site

Planted Acreage: 22.5

Vegetation Category	Definitions	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	N/A	3	0.04	0%
12. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	N/A	0	0.05	0%
		Totals	3	0.09	0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	N/A	0	0.00	0%
		Cumulative Totals	3	0.09	0%

Easement Acreage: 27.1

Vegetation Category	Definitions	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	Cross Hatch (Red - Dense/Yellow - Present)	8	1.81	7%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	N/A	0	0.00	0%

N/A - Item does not apply.

Project Reach UT1-1 – Permanent Photo Station 1 Station 8+53 – Looking Upstream

Project Reach UT1-2 – Permanent Photo Station 2 Station 14+58 – Looking Upstream at Crossing

Project Reach UT1-2 – Permanent Photo Station 3 Station 21+50 – Looking Upstream

Project Reach UT1-3 – Permanent Photo Station 4 Station 26+50 – Looking Upstream at Crossing

Project Reach UT1-3 – Permanent Photo Station 5 Station 27+50 – Looking Downstream

Project Reach UT1-4 – Permanent Photo Station 6 Station 47+20 – Looking Upstream

Project Reach UT1-A - Permanent Photo Station 7 Station 2+00 – Looking Downstream

Project Reach UT1-B – Permanent Photo Station 8 Station 9+86 – Looking Downstream

Project Reach UT1-C – Permanent Photo Station 9 Station 2+50 – Looking Upstream

Project Reach UT2-1 – Permanent Photo Station 10 Station 4+50 – Looking Upstream

Project Reach UT2-2- Permanent Photo Station 11 Station 11+00 – Looking Upstream at Pond Bottom

Project Reach UT2-2 – Permanent Photo Station 12 Station 11+00 – Looking Downstream

Project Reach UT2-2 – Permanent Photo Station 13 Station 7+59 – Looking Downstream

Project Reach UT2-3 – Permanent Photo Station 14 Station 13+83 – Looking Downstream

Project Reach UT2-4 – Permanent Photo Station 15 Station 20+39 – Looking Downstream

Project Reach UT2-A – Permanent Photo Station 16 Station 1+22 – Looking Upstream

Project Reach UT2-A – Permanent Photo Station 17 Station 2+62 – Looking Downstream

Appendix C Vegetation Plot Data

This Page Intentionally Left Blank

Table 7	7. Vegetation	Plot Criteria Attainment
Pop	olin Ridge St	ream Restoration Site
Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	No	
3	Yes	
4	Yes	
5	Yes	
6	Yes	85%
7	Yes	65%
8	Yes	
9	Yes	
10	No	
12	Yes	
13	Yes	

	Table 8. CVS Vegetation Plot Metadata Poplin Ridge Stream Resotration Site
Report Prepared By	Drew Alderman
Date Prepared	12/21/2015 8:46
Date Trepareu	12/21/2013 6.40
database name	Poplin_Ridge_95359_MY1_CVS_Vegetation.mdb
database location	Z:\ES\NRI&M\EBX Monitoring\Poplin_Ridge\Poplin Ridge-MY1-2015\Data\Veg
computer name	FIELD-PC
file size	62697472
ine size	02097472
DESCRI	PTION OF WORKSHEETS IN THIS DOCUMENT
	Description of database file, the report worksheets, and a summary of project(s)
Metadata	and project data.
	Each project is listed with its PLANTED stems per acre, for each year. This
Proj, planted	excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes
Proj, total stems	live stakes, all planted stems, and all natural/volunteer stems.
	List of plots surveyed with location and summary data (live stems, dead stems,
Plots	missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences and percent of
Damage	total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each plot;
Planted Stems by Plot and Spp	dead and missing stems are excluded.
	A matrix of the count of total living stems of each species (planted and natural
ALL Stems by Plot and spp	volunteers combined) for each plot; dead and missing stems are excluded.
	PROJECT SUMMARY
Project Code	PROJECT SUMMARY 95359
project Name	Poplin Ridge Stream Restoration Project
Description	1 opin Ruge Stream Restoration 1 roject
River Basin	Yadkin-Pee Dee
length(ft)	1 durin-1 cc Dcc
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	12
Sampled Flots	13

											Table				Counts (Spe Restoration		y Plot)														
																Curi	rent Plot	Data (MY1	2015)												\neg
		Species	Plot 1			Plot 2		Plo	ot 3		Plot 4		Plot 5		Plot 6			Plot 7]	Plot 8	Plot 9)	Plot	10		Plot 11	l	Plot 12		Plot 13	一
Scientific Name	Common Name	Туре	PnoLS P-all	T	PnoLS	P-all	T Pno	oLS P-	all T	PnoLS	P-all T	PnoLS	P-all	T I	PnoLS P-all	T	PnoLS	P-all T	PnoLS	P-all T	PnoLS P-all	T P	noLS P-a	all T	PnoLS	P-all T	PnoLS	P-all T	PnoL	S P-all T	
Asimina triloba	Pawpaw	Tree																			3	3					1	. 1	1	1 1	1
Betula nigra	River birch	Tree	3 3	3 3	3			3	3	3							1	1	1											2 2	2
Carya	Hickory	Tree										1																			
Celtis occidentalis	Common hackberry	Tree												3											1				2		
Diospyros virginiana	Common persimmon	Tree								1																					
DONTKNOW: unsure record																															
Fraxinus pennsylvanica	Green ash	Tree																											1		
Liquidambar styraciflua	Sweetgum	Tree												7																	
Liriodendron tulipifera	Tuliptree	Tree			1	1	1	1	1	1		1	1	1 1																4 4	4
Nyssa sylvatica	Blackgum	Tree									3 3	3																			
Platanus occidentalis	American sycamore	Tree									2 2	2 3	3	3 3	3	3 3	3 5	5 :	5						1	1 1	1 3	3	3	3 3	3
Populus deltoides	Eastern cottonwood	Tree																							3						2
Quercus	Oak	Tree			1	1	1				1 1	1 11	11	1 11	7	7 7	7 1	1	1 1	1 1	2 2	2 2			4	1 4	4 2	. 2	2	1 1	1
Quercus alba	White oak	Tree																			1	1 1									
Quercus falcata	Southern red oak	Tree										2	2 2	2 2					1	1 1	1	1 1									
Quercus michauxii	Swamp chestnut oak	Tree						1	1	1					1	1 1	1 1	1	1											1 1	1
Quercus nigra	Water oak	Tree	16 16	6 16	5			4	4	4 1	8 18 1	.8			1	1 1	1 7	7 ′	7 6	6 (5				5	5 5	5 4	. 4	4	8 8	8
Quercus phellos	Willow oak	Tree	2 2	2 2	2			8	8	8	3 3	3 10) 1(0 10	10 1) 10) 2	2	2 1	1	2 2	2 2			5	5 5	5 2	. 2	2	1 1	1
Quercus rubra	Northern red oak	Tree			1	1	1							8			3	3 3	3						1	1 1	1 2	. 2	2	1 1	1
Quercus velutina	Black oak	Tree																	1	1					2	2 2	2 1	. 1	1	2 2	2
	•	Stem count	21 2	1 21	1 3	3	3	17	17	18 2	7 27 2	28 27	7 27	7 45	22 2	2 22	2 20	20 20	0 10	10 10	9 9	9 9	0	0	4 18	3 18 1	8 15	15	18 2	24 24	26
		size (ares)	1			1			1		1		1		1			1		1	1		1			1		1		1	
		size (ACRES)	0.02			0.02		0.	02		0.02		0.02		0.02			0.02		0.02	0.02		0.0)2		0.02		0.02		0.02	
		Species count	3 3	3 3	3 3	3	3	5	5	6	5 5	6 5	5 5	5 8	5	5 5	5 7	7	7 5	5 5	5 5 5	5 5	0	0	2 6	6	6 7	7	9	10 10	11
	Stei	ms per ACRE	850 850	0 850	121	121	121	688	688 72	28 1,09	3 1,093 1,13	3 1,093	1,093	3 1,821	890 89	890	809	809 809	9 405	405 405	364 364	4 364	0	0 16	62 728	728 72	8 607	607 7	728 97	<mark>71</mark> 971 1,	,052

Tal	ble 9. Total Planted S Poplin Ridge St	`		Means	;)			
					Annual	Means		
		Species	MY	1 (201	5)	MY	/0 (201 <u>!</u>	5)
Scientific Name	Common Name	Туре	PnoLS	P-all	Т	PnoLS	P-all	Т
Asimina triloba	Pawpaw	Tree	5	5	5	21	21	21
Betula nigra	River birch	Tree	9	9	9	27	27	27
Carya	Hickory	Tree			1			
Celtis occidentalis	Common hackberry	Tree			6			
Diospyros virginiana	Common persimmon	Tree			1			
DONTKNOW: unsure record						7	7	7
Fraxinus pennsylvanica	Green ash	Tree			1			
Liquidambar styraciflua	Sweetgum	Tree			7			
Liriodendron tulipifera	Tuliptree	Tree	7	7	7	34	34	34
Nyssa sylvatica	Blackgum	Tree	3	3	3			
Platanus occidentalis	American sycamore	Tree	20	20	20	26	26	26
Populus deltoides	Eastern cottonwood	Tree			5			
Quercus	Oak	Tree	31	31	31	126	126	126
Quercus alba	White oak	Tree	1	1	1	9	9	9
Quercus falcata	Southern red oak	Tree	4	4	4	10	10	10
Quercus michauxii	Swamp chestnut oak	Tree	4	4	4	8	8	8
Quercus nigra	Water oak	Tree	69	69	69	22	22	22
Quercus phellos	Willow oak	Tree	46	46	46	50	50	50
Quercus rubra	Northern red oak	Tree	8	8	16			
Quercus velutina	Black oak	Tree	6	6	6			
		Stem count	213	213	242	340	340	340
		size (ares)		13			13	
		size (ACRES)		0.32			0.32	
		Species count				11	11	11
D1 C. N. 1:		ns per ACRE					1,058	1,058

¹PnoLS: No livestakes included in tally; P-all: All planted stems included in tally; T: Total stems including recruitment.

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Recruit Stems

This Page Intentionally Left Blank.

46

Poplin Ridge - Vegetation Monitoring Plot 1 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 2 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 3 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 4 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 5 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 6 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 7 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 8 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 9 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 10 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 11 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 12 October 21, 2015

Poplin Ridge - Vegetation Monitoring Plot 13 October 21, 2015

This Page Intentionally Left Blank

Appendix D Stream Geomorphology Data

This Page Intentionally Left Blank

				7	Γable 10 -	Morphol	ogical Par	rame ters \$	Summary	(Reach U	JT1)									
	13.7 15.0 13.7 15.0 18.1 23.4 18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 15.0 15.0 16.0 Min Max Med 26.3 55.5 37.3 13.5 103.3 41.2 1.0 7.6 3.0 49.4 66.0 59.7 1.1 3.4 2.3 1.1 3.4 2.3 7 15 8 4.8 11.5 8.2 1.1 5 8.2 1.1 5 8.2 1.2 7.0 1.3 9 1.4 8 9 1.1 5 8.2 1.4 9 1.5 9 1.8 9 1.8 9 1.9 1.9 1.1 3.4 2.3 1.1 3.4 2.3 1.1 3.4 2.3 1.1 3.4 2.3 1.1 3.4 2.3 1.1 3.4 3.4 1.1 3.4 3.5 3.1 3.5 3		Pı	roject Nai	ne/Numbe	er: Poplin	Ridge Str	ream Res	toration P	roject										
	Riffle				<u> </u>			Existing			<u> </u>			Des	ign			As-Bu	ilt MY0	
	Ref	ference R	each	UT1-R1	UT1-R1	UT1-R2	UT1-R3	UT1-R4	UT1-A	UT1-B	UT1-B	UT1-C	UT1	-R2	UT1	-R3	UT1	I-R2	UT1	-R3
				Pres.	Enh. I	Rest.	Rest.	Enh. I	Enh. I	Pres.	Enh. I	Enh. I	Re	est.	Re	est.	Re	est.	Re	est.
Feature	Riffle		Pool	Riffle	Riffle	Riffle	Riffle	Riffle	Riffle	Riffle	Riffle	Riffle	Riffle	Pool	Riffle	Pool	Riffle	Pool	Riffle	Pool
Drainage Area (ac)	426		426	136	136	248	384	728	88	120	120	250	2.	48	38	84	2	48	3	84
NC Regional Curve Discharge (cfs)	Riffle Pool 426 426 69 50 13.7 15.0 >50 NA 18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4 2.8 11.0 16.0 16.0 Min Max Med 26.3 55.5 37.3 13.5 103.3 41.2 1.0 7.6 3.0 49.4 66.0 59.7 3.6 4.8 4.4 Min Max Med 6 18 9			31	31	47	64	100	22	28	28	47	4	17	6	4	4	17	6	54
Design/Approx. Bankfull Discharge (cfs)	Riffle			22	22	35	55	65	20	15	30	50	3	35	5	2	3	35	5	52
Dimension	ftp >50 NA t² 18.1 23.4 ft) 1.4 1.6 ft) 1.7 2.7																			
BF Width (ft)	(c) 13.7 15.0 (c) >50 NA (c) 18.1 23.4 (c) 1.4 1.6 (c) 1.7 2.7			7.9	7.5	9.9	12.8	17.5	6.9	11.2	6.0	10.0	11.8	12.8	13.6	14.8	12.95	14.85	15.35	15.15
Floodprone Width (ft)	>50 NA 18.1 23.4 1.4 1.6		>50	>50	>50	>50	>50	>50	>50	>50	>40	>50	NA	>50	>50	>50	>50	>50	NA	
BF Cross Sectional Area (ft ²)	18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6		10.1	10.4	14.2	22.2	21.9	6.8	6.1	5.5	10.0	14.5	19.9	18.8	26.9	17.3	19.15	22.4	21.45	
BF Mean Depth (ft)	18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8		1.3	1.4	1.4	1.7	1.2	1.0	0.5	0.9	1.0	1.2	1.6	1.4	1.8	1.3	1.25	1.45	1.45	
BF Max Depth (ft)	1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8		2.0	1.8	2.0	2.4	2.3	1.4	1.0	1.1	1.3	1.8	2.4	1.9	2.8	2.1	2.35	2.25	2.55	
Width/Depth Ratio	>50 NA 18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4		6.2	5.4	7.0	7.4	14.0	6.9	20.4	6.6	10.0	9.8	8.2	9.9	8.1	9.7	11.65	10.5	10.75	
Entrenchment Ratio	Riffle Pool 426 426 69 50 13.7 15.0 >50 NA 18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4 2.8 11.0 16.0 16.0 Min Max Med 26.3 55.5 37.3 13.5 103.3 41.2 1.0 7.6 3.0 49.4 66.0 59.7 3.6 4.8 4.4 Min Max Med		>2.2	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2	NA	>2.2	NA	>2.2	>2.2	>2.2	>2.2	
Wetted Perimeter (ft)	Riffle Pool 426 426 69 50 13.7 15.0 >50 NA 18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4 2.8 11.0 16.0 16.0 Min Max Med 26.3 55.5 37.3 13.5 103.3 41.2 1.0 7.6 3.0 49.4 66.0 59.7 3.6 4.8 4.4 Min Max Med 6 18 9 1.1 3.4 2.3 7 15 8		10.4	9.1	11.6	14.5	19.0	8.2	11.8	7.5	11.1	12.6	14	14.7	16.2	13.9	15.95	16.35	16.4	
Hydraulic Radius (ft)	18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4		1.0	1.1	1.2	1.5	1.2	0.8	0.5	0.7	0.9	1.1	1.4	1.4	1.7	1.25	1.15	1.4	1.3	
Substrate	Riffle Pool 426 426 69 50 13.7 15.0 >50 NA 18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4 2.8 11.0 16.0 16.0 Min Max Med 26.3 55.5 37.3 13.5 103.3 41.2 1.0 7.6 3.0 49.4 66.0 59.7 3.6 4.8 4.4 Min Max Med 6 18 9 1.1 3.4 2.3 7 15 8 4.8 11.5 8.2 5 13 9 4.8 9.2 7.0 5 42 15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
D16 (mm)	Riffle			0.062	0.062	0.062	2	3	0.062	2	3	2		2		2	0.0	062	1	.7
D50 (mm)	Riffle			0.062	16.0	2	8	25	0.1	29	12	11		8		8	0.0	062		25
D84 (mm)	Riffle			0.062	63.0	7	25	51	0.4	60	27	45	2	25	2	5	2	26	6	60
Pattern	NA NA NA NA NA NA NA NA																			
	Min	Max	Med										Min	Max	Min	Max	Min	Max	Min	Max
Channel Beltwidth (ft)	26.3	NA 18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4											38	57	44	65	35	60	42	65
Radius of Curvature (ft)	13.7 15.0 NA 18.1 23.4 1.4 1.6 1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4 1.6											18	89	20	103	15	75	17	80	
Radius of Curvature Ratio	13.7											1.5	7.6	1.5	7.6	1.5	7.6	1.5	7.6	
Meander Wavelength (ft)	1.7 2.7 9.8 9.6 >2.2 NA 14.9 16.8 1.2 1.4 2.8 11.0 16.0 Min Max Med 26.3 55.5 37.3 13.5 103.3 41.2 1.0 7.6 3.0 49.4 66.0 59.7 3.6 4.8 4.4 Min Max Med											38	57	44	65	35	52	37	56	
Meander Width Ratio	3.6	4.8	4.4										3.2	4.8	3.2	4.8	2.7	4.0	2.7	4.3
Profile	Riffle																			
	m) 16.0 Min Max Med		Med										Min	Max	Min	Max	Min	Max	Min	Max
Riffle Length (ft)	6	18	9										5	16	6	18	6	18	7	22
Riffle Slope (%)	Nin Max Med		2.3										1.1	3.4	1.1	3.4	1.0	3.6	1.0	3.7
Run Length (ft)	7	15	8										6	13	7	15	6	15	8.0	18.0
Run Slope (%)	4.8												4.8	11.5	4.8	11.5	4.6	12.0	5.0	11.0
Glide Length (ft)													4	11	5	13	4	12	6.0	13.2
Glide Slope (%)													4.8	9.2	4.8	9.2	4.7	10.0	5.0	10.9
Pool Length (ft)													4	36	5	42	6	42	8.0	50.0
Pool Slope (%)	-																1.1	2.5	1.1	2.4
Pool-to-Pool Spacing (ft)													16	55	18	64	20	60	20	70
Additional Reach Parameters		55																		
Valley Length (ft)	NA 1.6 1.7 2.3 1.6 1.7 2.7 1.6 1.4 1.6 1.6 1.7 2.7 1.6 1.4 1.6 1.6 1.6 1.6 1.0 1.2 1.4 1.6 1.6 1.0 1.2 1.4 1.6 1.6 1.2 1.4 1.6 1.2 1.4 1.6 1.2 1.4 1.6 1.2 1.4 1.6 1.0			622	534	1173	731	1294	264	573	434	908	I -		_		1 (070	1 1	115
Channel Length (ft)	(ft) 13.7 15.0 16.0 17.0 18.1 23.4 16.1 16.1 16.1 17.1 2.7 18.1 2.8 16.8			716	541	1197	731	1340	270	618	449	921				-		178		223
Sinuosity	Access A			1.2	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1		1			.1		.1
Water Surface Slope (ft/ft)	Riffle			NA	NA	NA	0.003	0.004	NA	NA	NA	NA						IA		A
Channel Slope (ft/ft)	Access A			0.0048	0.011	0.007	0.003	0.005	0.012	0.012	0.018	0.008	0.0		0.0			066	0.0	
Rosgen Classification				F.4	E4	E4	E4	C4	E5	C4	E4	E4	0.0 E			4		34 34		34
Rosgon Classification		L		L	LT	LŦ	1.7	C-7	L	C-7	L	L					-			

		ne ro con	t'd - Morp	ohological	Paramete	rs Summ	ary (Rea	ch UT2)						
	F	Project Nai	ne/Numbe	er: Poplin	Ridge Str	ream Rest	toration I	Project							
					Existing				Des	sign			As-Bu	ilt MY0	
Ref	erence Re	ach	UT2-R1	UT2-R2	UT2-R3	UT2-R4	UT2-A	UT1	-R2	UT1-I	R3/R4	UT1	-R2	UT1-I	R3/R4
			Enh. II	Rest.	Rest.	Rest.	Enh. II	Re	st.	Re	est.	Re	est.	Re	est.
Riffle		Pool	Riffle	Pond	Riffle	Riffle	Riffle	Riffle	Pool	Riffle	Pool	Riffle	Pool	Riffle	Pool
426		426	634	723	742	864	51	72	23	8	54	72	23	80	64
	69							10	00	1	13	10	00	1	13
	50							5	2	7	0	5	2	7	0
13.7		15.0	25.6		16.2	12.1	6.1	17.2	18.6	18.2	19.6	21	19.6	17.4	21.1
			>50		>50	>50	>50	>50			NA			>50	>50
			19.6		22.4	12.6	3.0	31.5	42	34.8	47.6	26.5		30.8	34.4
			0.8		1.4	1.0	0.5							1.8	1.6
1.7			1.7		2.6	1.6	1.2		3.5	2.6	3.8			2.5	3.5
9.8		9.6	33.5		11.8	11.6	12.2	9.4	8.2	9.5	8.1	16.6	11.7	9.8	12.9
			>2.2		>2.2	>2.2	>2.2		NA	>2.2				>2.2	>2.2
			26.2		17.9	13.1	7.0				21.5				22.9
1.2		1.4	0.7		1.3	1.0	0.4	1.7	2.1	1.8	2.2	1.2	1.5	1.7	1.5
					•			,		•					
			0.062		0.062	1.5	0.062							0.0	
			0.062		0.062										28
	16.0		0.72		4.8	15.0	0.57	1	5	1	5	2	4	6	51
			1	1	T	ı									
			+	†											Max
					†										84
			+		1										132
				-	1										7.6
			_		†										84
1.9	4.1	2.1						3.2	4.8	3.2	4.8	3.2	4.8	3.2	4.8
Min	Mon	Mod	T T			1		Min	Mon	Min	Mari	Min	More	Min	Max
															26.5
								-							3.8
															21.0
			1	-											11.2
															16.3
-			1	 	1										9.1
															60.0
			<u> </u>												10.1
			-		ļ										92.0
10.0	04.0	30.0						23	01	24	65	10.0	90.0	20.5	92.0
	279		410	641	779	1015	427			l -	-	78	35	7	10
			410	_											
			112	6/11	701							¥/	17	. /-	78
	318		443	641	781	1032	437	1			1	84			78 1
	318 1.14		1.1	1.0	1.0	1.0	1.0	1.	1	1	.1	1.0	08	1.	.1
	318		1	1					1	1	.1	1.0	08	1.	.1
	13.7 >50 18.1 1.4 1.7 9.8 >2.2 14.9	Riffle 426 69 50 50 13.7 >50 18.1 1.4 1.7 9.8 >2.2 14.9 1.2 11.0 16.0 16.0 Min Max 26 56 13 103 1.0 7.6 49 66 1.9 4.1 Min Max 6 18 1.1 3.4 7 15 4.8 11.5 5 13 4.8 9.2 5 42	426	Riffle	Riffle Pool Riffle Pond 426 426 634 723 69 50 13.7 15.0 25.6 >50 NA >50 18.1 23.4 19.6 1.4 1.6 0.8 1.7 2.7 1.7 9.8 9.6 33.5 >2.2.2 NA >2.2 14.9 16.8 26.2 1.2 1.4 0.7 2.8 0.062 11.0 0.062 16.0 0.72 Min Max Med 13 103 41 26 56 37 13 103 41 49 66 60 1.9	Reference Reach UT2-R1 UT2-R2 UT2-R3 Riffle Pool Riffle Pond Riffle 426 426 634 723 742 69 13.7 15.0 25.6 16.2 >50 NA >50 >50 18.1 23.4 19.6 22.4 1.4 1.6 0.8 1.4 1.7 2.7 1.7 2.6 9.8 9.6 33.5 11.8 >2.2 NA >2.2 >2.2 14.9 16.8 26.2 17.9 1.2 1.4 0.7 1.3 2.8 0.062 0.062 11.0 0.062 0.062 13 103 41 49 66	Reference Reach UT2-R1 UT2-R2 UT2-R3 UT2-R4 Riffle Pool Riffle Pond Riffle Rest. Rest. 426 426 634 723 742 864 69 50 13.7 15.0 25.6 16.2 12.1 >50 NA >50 -50 >50 18.1 23.4 19.6 22.4 12.6 1.4 1.6 0.8 1.4 1.0 1.7 2.7 1.7 2.6 1.6 9.8 9.6 33.5 11.8 11.6 2.2 NA >2.2 >2.2 >2.2 14.9 16.8 26.2 17.9 13.1 1.2 1.4 0.7 -	Reference Reach UT2-R1 UT2-R2 UT2-R3 UT2-R4 UT2-A Enh. II Rest. Rest. Rest. Enh. II Riffle Pool Riffle Pond Riffle R	Reference Reach UT2-R1 UT2-R2 UT2-R3 UT2-R4 UT2-A UT1 Rest. Rest. Enh. II Rest. Rest. Enh. II Rest. Rest. Enh. II Rest. Rest. Enh. II Rest. Enh. II Rest. Rest. Enh. II Rest. Rest. Enh. II Rest. Rest. Enh. II II Go. 20. So. II. II. II. II. II. II. II. II.	Reference Reach UT2-RI UT2-R2 UT2-R3 UT2-R4 UT2-A UT1-R2-TR0-TR0-TR0-TR0-TR0-TR0-TR0-TR0-TR0-TR0	Reference Reach UT2-R1 UT2-R2 UT2-R3 UT2-R4 UT2-A UT1-Rest. Rest. Rest. CRest. Enh. II Rest. Pool Riffle Pool Riffle Pool Riffle Ropol Riffle Riffle Riffle Riffle Riffle Riffle Riffle Riffle Riffle Pool Riffle Pool Riffle Riffle Riffle Pool Riffle Riffle	Reference Resch UT2-RI UT2-R2 UT2-R2 UT2-R3 UT2-R4 UT2-R4 UT2-R4 UT2-R4 UT2-R3 UT2-R4 UT2-R4 UT2-R4 UT2-R4 UT2-R4 UT2-R4 UT2-R4 Enh. II Rest. Enh. II Rest. Enh. II Rest Rest. Enh. II Rest Rest Enh. II Rest Pool Riffle Riffle	Reference Reach UT2-R1 UT2-R2 UT2-R3 UT2-R4 UT2-A6 UT1-T2-T2 UT1-T2-T4 UT1-T2-T4 UT1-T2-T4 UT1-T2-T4 UT1-T2-T4 UT1-T2-T4 UT1-T2-T4 UT1-T2-T4 UT1-T2-T4 Rest. Bah. II Riffle Pool Riffle Pool Riffle Pool Riffle Pool Riffle Pool Riffle Rest. Bah. II T23 B64 7.7 7.7 7.7 7.7 7.7 7.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.2 1.1 1.0 0.5 1.8 2.3 1.9 2.4 1.3 1.7 2.7 1.7	Reference Re	Reference Rescription Refire

						T	able 11a	a Mor	nitoring								Paran	neters – C	Cross Se	ections	3)												
				oss Sec each U			S75.00 S75.00 S75.01 S																Section 4 each UT2-	`)					ection 5 (Ru ach UT2-2	ın)		
Dimension	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2 MY3	MY5	MY7	MY+	Base	MY1 MY	2 MY	73 N	MY7 MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3 MY	75 N	1Y7 MY+	1
Record elevation (datum) used	577.24	577.24	1					577.10	577.10					586.40	586.40					585.0	0 585.00						576.32	576.32					1
Bankfull Width (ft)) 3.2	5.5						3.0	5.6					8.2	8.0					11.0	8.8						21.0	21.8					1
Floodprone Width (ft)) >17.2	>17.2						>15.2	>15.2					>50	>50					>44.4	>44.4						>50	>50					Ī
Bankfull Mean Depth (ft)) 0.5	0.7						0.4	0.5					1.0	0.8					0.7	0.6						1.3	1.2					1
Bankfull Max Depth (ft)) 0.9	1.4						0.6	1.3					1.7	1.5					1.3	1.1						2.2	2.2					1
Bankfull Cross Sectional Area (ft ²)) 0.6	3.7						1.1	2.7					7.9	6.7					7.4	5.0						26.5	25.3					
Bankfull Width/Depth Ratio	6.4	8.2						7.9	11.5					8.5	9.5					16.4	15.6						16.6	18.8					1
Bankfull Entrenchment Ratio	>2.2	>3.1						>2.2	>2.7					>2.2	>6.3					>2.2	>5.0						>2.2	>2.3					1
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0					1.0	1.0					1.0	1.0						1.0	1.0					1
				Section each U	n 6 (Pool) T2-2						, ,				Cros		,	,	•				Section 9 each UT1	•)					ection 10 (Po ach UT1-1	ool)		
Dimension	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2 MY3	MY5	MY7	MY+	Base	MY1 MY	72 MY	73 N	MY5 MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3 MY	75 N	1Y7 MY+]
Record elevation (datum) used	576.48	576.48	3					575.00	575.00					575.01	575.01					602.0	6 602.06						602.28	602.28					
Bankfull Width (ft)) 19.6	19.1						21.1	19.8					17.4	17.1					11.7	11.4						15.2	14.7					
Floodprone Width (ft)) >50	>50						>50	>50					>50	>50					>50	>50						>50	>50					
Bankfull Mean Depth (ft)) 1.7	1.6						1.6	1.6					1.8	1.7					1.1	1.1						1.4	1.3					
Bankfull Max Depth (ft)	3.1	3.0						3.5	3.4					2.5	2.4					1.8	1.8						2.6	2.5					1
Bankfull Cross Sectional Area (ft ²)) 32.6	30.0						34.4	32.0					30.8	28.4					13.0	12.1						21.0	19.8					
Bankfull Width/Depth Ratio	11.7	12.2						12.9	12.2					9.8	10.3					10.4	10.7						11.1	10.9					1
Bankfull Entrenchment Ratio	>2.2	>2.6						>2.2	>2.5					>2.2	>2.9					>2.2	>4.4						>2.2	>3.4					1
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0					1.0	1.0					1.0	1.0						1.0	1.0					Ī
				ection each U	11 (Riffle Γ1-A))			Cros		,	/					Section 14 each UT1)			•		ction 15 (Rif ach UT1-2	ffle)		
Dimension	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2 MY3	MY5	MY7	MY+	Base	MY1 MY	/2 MY	73 N	MY7 MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3 MY	75 N	1Y7 MY+	
Record elevation (datum) used	599.06	599.06	5					596.26	596.26					595.97	595.97					591.2	1 591.21						591.48	591.48					
Bankfull Width (ft)) 10.0	10.2						17.4	17.4					12.5	12.2					12.3	12.0						13.4	12.9					
Floodprone Width (ft)) >50	>50						>50	>50					>50	>50					>50	>50						>50	>50					
Bankfull Mean Depth (ft)) 1.0	1.0						1.4	1.3					1.2	1.2					1.1	1.0						1.4	1.3					Ī
Bankfull Max Depth (ft)) 1.7	1.6						2.5	2.4					1.9	1.9					2.2	2.0						2.3	2.2					1
Bankfull Cross Sectional Area (ft ²)) 10.5	10.1						24.4	21.8					15.6	14.4					13.9	11.9						19.0	17.3					1
Bankfull Width/Depth Ratio	9.6	10.3						12.4	13.9					10.0	10.4					10.9	12.1						9.4	9.7					1
Bankfull Entrenchment Ratio	>2.2	>4.9						>2.2	>2.9					>2.2	>4.1					>2.2	>4.2						>2.2	>3.9					1
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0					1.0	1.0					1.0	1.0						1.0	1.0					1

						Table	11a. C	ont'd -	Monito	oring D						ımmary ration P			al Paran	neters -	- Cross	s Section	ons)												
			Cross So Re	ection 16 each UT1	` /)					Section 1 each UT	7 (Pool) 1-B						Section Reach Ul	18 (Pool) Γ1-3						ection 1 each UI	9 (Riffle 1-3	e)					ection 20 ach UT1-	. ,		
Dimension	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+
	Record elevation (datum) used 591.84	591.84						590.93	590.93						588.03	588.03						588.19	588.19						586.15	586.15					1
	Bankfull Width (ft) 11.7	10.8						14.2	13.1						14.5	14.3						15.2	15.1						15.5	16.1					
	Floodprone Width (ft) >50	>50						>50	>50						>50	>50						>50	>50						>50	>50					
	Bankfull Mean Depth (ft) 1.1	1.0						0.7	0.6						1.5	1.4						1.5	1.4						1.4	1.3					
	Bankfull Max Depth (ft) 1.8	1.7						1.4	1.3						2.6	2.6						2.4	2.1						2.1	2.1					
	Bankfull Cross Sectional Area (ft ²) 12.3	11.2						10.2	8.5						21.5	19.6						23.0	21.8						21.9	20.9					
	Bankfull Width/Depth Ratio 11.2	10.4						19.7	20.2						9.8	10.4						10.1	10.5						11.0	12.4					
	Bankfull Entrenchment Ratio >2.2	>4.6						>2.2	>3.8						>2.2	>3.5						>2.2	>3.3		1	1		<u> </u>	>2.2	>3.1					\dashv
	Bankfull Bank Height Ratio 1.0	1.0						1.0	1.0						1.0	1.0			+			1.0	1.0		+				1.0	1.0					
	Bunktun Bunk Height Hatto	1.0	Cuasa S	Section 2	1 (Deal)			1.0		Cuosa C	action 2	2 (Riffle)			1.0	1.0	Cwaga	Continu	23 (Pool)			1.0		Cuasa S	lootion 1	 4 (Riffle		1	1.0	1.0	Cuasa S	ection 25	(Deel)		$\overline{}$
				each UT1	` /				,		ection 2. each UT		•					Section Reach UI	` ,	1					each UT	,	:)					ach UT1-	. ,		
Dimension	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+			MY2	MY3	MY5	MY7	MY+
	Record elevation (datum) used 585.60	585.60						592.04	592.04						591.80							586.30	586.30						585.80	585.80					
	Bankfull Width (ft) 15.8	15.0						13.2	12.5						14.6	14.0						14.2	13.8						12.0	11.1					
	Floodprone Width (ft) >50	>50						>50	>50						>50	>50						>46.6	>46.6					1	>50	>50					
	Bankfull Mean Depth (ft) 1.4	1.3						1.3	1.1						1.3	1.1						1.0	0.9						1.3	1.3					
	Bankfull Max Depth (ft) 2.5	2.4						1.9	1.6						2.1	1.9						1.7	1.6						2.3	2.1					
	Bankfull Cross Sectional Area (ft ²) 21.4	19.1						16.8	13.6						19.1	14.8						14.0	12.2						15.5	14.3					
	Bankfull Width/Depth Ratio 11.7	11.8						10.4	11.5						11.1	13.3						14.3	15.6						9.4	8.6					 _
	Bankfull Entrenchment Ratio >2.2	>3.3						>2.2	>4.0						>2.2	>3.6						>2.2	>3.4						>2.2	>4.5					
	Bankfull Bank Height Ratio 1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0					
				Section 2 each UT1					(ection 2' each UT	7 (Riffle) 1-4)					Section 2 Reach Ul	28 (Riffle Γ1-4)					Section : each UI	29 (Pool 1-4)								
Dimension	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+
	Record elevation (datum) used 581.70	581.70						582.15	582.15						579.70	579.70						579.80	579.80												1
	Bankfull Width (ft) 14.8	14.1						16.5	15.9						15.9	15.4						20.3	20.8												
	Floodprone Width (ft) >47	>47						>50	>50						>50	>50						>50	>50												1
	Bankfull Mean Depth (ft) 1.2	1.2						1.3	1.2						1.5	1.4						1.6	1.4												\Box
	Bankfull Max Depth (ft) 2.1	2.1						2.1	1.9						2.6	2.5						3.1	2.9												
	Bankfull Cross Sectional Area (ft²) 17.6	16.2						21.5	18.3						24.2	21.7						33.2	30.0												
	Bankfull Width/Depth Ratio 12.5	12.3						12.7	13.8						10.4	10.9						12.5	14.4												$\neg \neg$
	Bankfull Entrenchment Ratio >2.2	>3.3						>2.2	>3.1						>2.2	>3.3						>2.2	>2.4												$\overline{}$
	Bankfull Bank Height Ratio 1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0												\Box

															Table Poplir	e 11 1 Ric	b. M lge S	onito tre am	ring Res	Data storat	- Stre ion P	am l rojec	Reacl	n Dat T1-2	ta Sui (1,1'	mmai 78 fe	ry et)																				
Parameter			Baseline	9					MY	- 1						Y - 2						MY						MY-	- 4				N	1Y - 5					MY - 6	5				М	7 - 7		٦
Dimension & Substrate - Riffle	Min	Mean	Med Ma	ax S	SD n	Mi	in Mo	ean N	Ied	Max	SD	n	Min	Mear	Med	d N	I ax	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n N	Iin Me	an Me	d Max	SD	n	Min M	lean N	Ied M	ax S	D n	Miı	n Mea	n Med	Max	SD n	Π
Bankfull Width (ft)	-	12.95				12.	.2 12	2.6 1	2.6	12.9	0.5	2																																			
Floodprone Width (ft)	-	>50				50.	.0 50	0.0 5	0.0	50.0	0.0	2																																			
Bankfull Mean Depth (ft)	-	1.3				1.2	2 1	.3	1.3	1.3	0.1	2																																			
Bankfull Max Depth (ft)	-	2.1					9 2				0.2	2																																			
Bankfull Cross-Sectional Area (ft ²)	-	17.3				14.	.4 15	5.9 1	5.9	17.3	2.1	2																																			
Width/Depth Ratio	-	9.7				9.7	7 10).1 1	0.1	10.4	0.5	2																																			
Entrenchment Ratio	-	>2.2				3.9	9 4	.0 4	4.0	4.1	0.1	2																																			
Bank Height Ratio	-	1.0				1.0	0 1	.0	1.0	1.0	0.0	2																																			
Profile							•	•	•										•	•								•		•		•	•			•		•	•	•		•		•	•		П
Riffle Length (ft)	6.0	-	- 18	.0																																											П
Riffle Slope (ft/ft)	0.010	-	- 0.0	36																																											П
Pool Length (ft)	6.0	-	- 42	.0																																											ī
Pool Max Depth (ft)	-	-																																													Ī
Pool Spacing (ft)	20.0	-	- 60	.0																																											Ī
Pattern																																											-				Ī
Channel Belt Width (ft)	35.0	-	- 60	.0																																											ī
Radius of Curvature (ft)			- 75	.0																																											ī
Rc: Bankfull Width (ft/ft)			- 7.6	50																																											r
Meander Wavelength (ft)			- 52	.0																																											Ī
Meander Width Ratio		-	- 4.0	0																																											ī
Additional Reach Parameters													-			-	•			· ·	! 					-					-	•	-	•				•	-	-			-				ī
Rosgen Classification			E4																																												ī
Channel Thalweg Length (ft)			1,178																																												Ī
Sinuosity (ft)			1.1																																												Ī
Water Surface Slope (Channel) (ft/ft)			-																																												Ī
Bankfull Slope (ft/ft)			0.0066																																												Γ
Ri% / Ru% / P% / G% / S%	-	-			-																																										ĺ

⁻ Information Unavailable.

N/A - Information does not apply.

 $Ri = Riffle \ / \ Ru = Run \ / \ P = Pool \ / \ G = Glide \ / \ S = Step$

	Беер														Tabl F	e 11b Poplin	Cont Ridg	t'd. I e Str	Moni ream	torii Res	ıg Dat torati	ta - S ion P	Stre a Proje	m Re	each JT1-3	Data 3 (89	a Sur 03 fe	nmai et)	ry																						
Parameter		В	Baseline						MY	- 1						MY							MY			1			M	ſY - 4						MY-	- 5					M	7 - 6					N	/IY - 7		
Dimension & Substrate - Riffle	Min	Mean M	Ied Ma	x S	SD r	n N	Min M	[ean]	Med	Max	SD	n	N	Min M	ean	Med	Max	S	D	n	Min M	Iean l	Med	Max	SD	n	Min	Mea	n Me	d Ma	ax S	D	n N	Iin M	ean M	1ed I	Max	SD	n i	Min	Mean	Med	Max	SD	n	Miı	n Mea	ın Me	d Ma	x SI) n
Bankfull Width (ft)	-	15.35				- 1	5.1 1	5.6	15.6	16.1	0.7	2																																							
Floodprone Width (ft)	-	>50				- 5	0.0 5	0.0	50.0	50.0	0.0	2																																							
Bankfull Mean Depth (ft)	-	1.45					1.3																																												
Bankfull Max Depth (ft)	-	2.25					2.1 2																																												
Bankfull Cross-Sectional Area (ft ²)	-	22.4				- 2	0.9 2	21.4	21.4	21.8	0.6	2																																							
Width/Depth Ratio	-	10.50					0.5 1																																												
Entrenchment Ratio	-	>2.2				- 3	3.1	3.2	3.2	3.3	0.1	2																																							
Bank Height Ratio	-	1.0				- 1	1.0	1.0	1.0	1.0	0.0	2																																					\top	П	
Profile																																																			
Riffle Length (ft)	7.0	-	- 22.	0		-																																													
Riffle Slope (ft/ft)	0.010	-	- 0.03	37		-																																													
Pool Length (ft)	8.0	-	- 50.0	0		-																																													
Pool Max Depth (ft)	-	-				-																																													
Pool Spacing (ft)	20.0	-	- 70.	0		-																																													
Pattern																																																			
Channel Belt Width (ft)	42.0	-	- 65.0	0		-																																													
Radius of Curvature (ft)		-	- 80.	0		-																																													
Rc: Bankfull Width (ft/ft)	1.50	-	- 7.6	0		-																																													
Meander Wavelength (ft)	37.0	-	- 56.	0		-																																													
Meander Width Ratio	2.7	-	- 4.3	3		-																																													
Additional Reach Parameters		٠		•				•	•			•		÷			•	•	•			•	•		•			•		•	•	•			•					•				•							
Rosgen Classification			E4																																																
Channel Thalweg Length (ft)			893																																																
Sinuosity (ft)			1.1																																																
Water Surface Slope (Channel) (ft/ft)			-																																																
Bankfull Slope (ft/ft)			0.004																																																
Ri% / Ru% / P% / G% / S%	-	-			-																																														

- Information Unavailable.

 $\ensuremath{\text{N/A}}$ - Information does not apply.

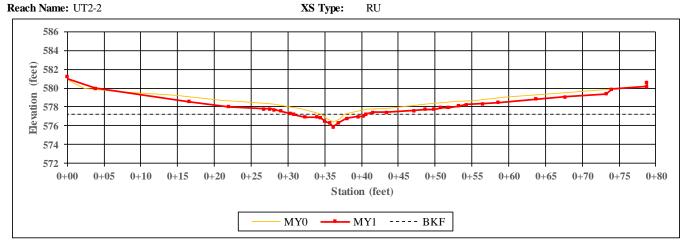
 $Ri = Riffle \ / \ Ru = Run \ / \ P = Pool \ / \ G = Glide \ / \ S = Step$

														Ta	able 11 Popl	lb Co lin Ric	ont'd dge	l. Moi Streai	nitorii n Res	ng Da torati	ta - Si ion Pi	tre an roje ci	n Rea t - UT	ch Dat 2-2 (8	ta Sui 847 fe	nmar et)	y																			
Parameter			Base							Y - 1					M	Y-2						MY-					MY						/IY - 5					MY						MY - 7		
Dimension & Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mea	n Me	d M	I ax	SD	n	Min M	Iean N	Med N	Iax S	D n	Min	Mean	Med	Max	SD	n I	Min Me	an M	d Max	x SD	n	Min	Mean	Med	Max	SD 1	n N	Iin Me	an Me	ed Ma	ax SD	n
Bankfull Width (ft)	-	21.0	-	-	1	-	21.8	21.8	21.8	21.8	N/A	1																																		
Floodprone Width (ft)	-	>50	-	-	-	-	50.0	50.0	50.0	50.0	N/A	1																																		
Bankfull Mean Depth (ft)	-	1.3	-	-	-	-	1.2	1.2	1.2	1.2	N/A	1																																		
Bankfull Max Depth (ft)	-	2.2	-	-		-			2.2			1																																		
Bankfull Cross-Sectional Area (ft ²)	-	26.5	-	-	-	-	25.3	25.3	25.3	25.3	N/A	1																																		
Width/Depth Ratio	-	16.6	-	-		-	18.8	18.8	18.8	18.8	N/A	1																																		
Entrenchment Ratio	-	>2.2	-	-	í	-	2.3	2.3	2.3	2.3	N/A	1																																		
Bank Height Ratio	-	1.0	-	-	-	-	1.0	1.0	1.0	1.0	N/A	1																																		
Profile																																														
Riffle Length (ft)	9.0	-	-	25.0	-	-																																								
Riffle Slope (ft/ft)	0.0	-	-	0.036	-	-																																								
Pool Length (ft)	7.8	-	-	47.0	-	-																																								
Pool Max Depth (ft)	-	-	-	-	-	-																																								
Pool Spacing (ft)	18.0	-	-	90.0	-	-																																								
Pattern	•					•			•	•	•					•										•		•	'	•				•					•		•					
Channel Belt Width (ft)	67.0	-	-	101.0	-	-																																								
Radius of Curvature (ft)	32.0	-	-	160.0	_	-																																								
Rc: Bankfull Width (ft/ft)		-	-	7.60	-	-																																								
Meander Wavelength (ft)	67.0	-	-	101.0	-	-																																								
Meander Width Ratio	3.2	-	-	4.8	-	-																																								
Additional Reach Parameters	•	•				•		•		•	•		•	•		•				•	•		•	•	•	•		•	•	•		•	•	•							•					
Rosgen Classification			E-	4																																										
Channel Thalweg Length (ft)	Ì		84	-7																																										
Sinuosity (ft)			1.0)8																																										
Water Surface Slope (Channel) (ft/ft)			-																																											
Bankfull Slope (ft/ft)			0.00)61																																										
Ri% / Ru% / P% / G% / S%	-	-	-	-	-																																									
T C TT 11.11																																														_

⁻ Information Unavailable.

N/A - Information does not apply.

 $Ri = Riffle \ / \ Ru = Run \ / \ P = Pool \ / \ G = Glide \ / \ S = Step$


														T	able 1 Popl	l 1b C lin Ri	ont'o	d. Mo Strean	nitori n Res	ing D torat	ata - S ion P	Strea rojec	m Re	each I T2-3/4	Data S 4 (521	Sumn 1 feet	nary t)																				
Parameter			Baselir	ne					MY	1						MY - 2						MY	- 3					MY - 4						Y - 5					MY-						/IY - 7		
Dimension & Substrate - Riffle	Min	Mean	Med N	Iax S	D							n	Min	Mea	n M	led 1	Max	SD	n	Min	Mean	Med	Max	SD	n N	Min M	lean M	ed Ma	ax SD	n	Min	Mean	Med	Max	SD	n N	Ain M	iean l	Med N	Max S	D n	ı Mi	in Mea	an Me	d Ma	x SD	n
Bankfull Width (ft)	-	17.4	-	-	-					17.1		1																																			
Floodprone Width (ft)	-	>50	-	-	-	- 5	0.0 5	0.0	0.0	50.0	N/A	1																																			
Bankfull Mean Depth (ft)	-	1.8	-	-	-	- 1	1.7	7	1.7	1.7	N/A	1																																			
Bankfull Max Depth (ft)	-	2.5	-	-	-	- 2	2.4	2.4	2.4	2.4	N/A	1																																			
Bankfull Cross-Sectional Area (ft ²)	-	30.8	-	-	-		8.4 2				N/A	1																																			
Width/Depth Ratio	-	9.8	-	-	-	- 1	0.3 1	0.3 1	0.3	10.3	N/A	1																																			
Entrenchment Ratio	-	>2.2	-	-	-	- 2	2.9 2	2.9	2.9	2.9	N/A	1																																			
Bank Height Ratio	-	1.0	-	-	-	- 1	1.0	0.1	1.0	1.0	N/A	1																																			
Profile																																															
Riffle Length (ft)	8.2	-	- 2	6.5	-	-																																									
Riffle Slope (ft/ft)	0.012	-	- 0.	038	-	-																																									
Pool Length (ft)	8.5	-	- 6	0.0	-	-																																									
Pool Max Depth (ft)	-	-	-	-	-	-																																									
Pool Spacing (ft)	20.5	-	- 9	2.0	-	-																																									
Pattern																																															
Channel Belt Width (ft)	56.0	-	- 8	4.0	-	-																																									
Radius of Curvature (ft)	32.0	-	- 16	50.0	-	-																																									
Rc: Bankfull Width (ft/ft)	1.5	-	- 7	7.6	-	-																																									
Meander Wavelength (ft)	56.0	-	- 8	4.0	-	-																																									
Meander Width Ratio	3.2	-	- 4	1.8	-	-																																									
Additional Reach Parameters			•		•	•			•	•					•	•			•			•		•	•		•	•	•				•	•	•												
Rosgen Classification			E4																																												
Channel Thalweg Length (ft)			778																																												
Sinuosity (ft)			1.1																																												
Water Surface Slope (Channel) (ft/ft)			N/A																																												
Bankfull Slope (ft/ft)			0.002																																												
Ri% / Ru% / P% / G% / S%	-	-	-	-	-																																										
I-fti IIiI-bl-																																												-			

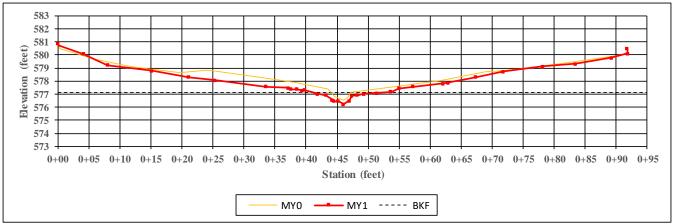
- Information Unavailable.

 $\ensuremath{N/A}$ - Information does not apply.

 $Ri = Riffle \ / \ Ru = Run \ / \ P = Pool \ / \ G = Glide \ / \ S = Step$

Project Name: Poplin RidgeXS Number:1Station: 7+59

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	3.2	5.5						
Floodprone Width (ft)	17.2	17.2						
Bankfull Mean Depth (ft)	0.5	0.7						
Bankfull Max Depth (ft)	0.9	1.4						
Bankfull Cross-Sectional Area (ft2)	1.6	3.7						
Width/Depth Ratio	6.4	8.2						
Entrenchment Ratio	5.3	3.1						
Bank Height Ratio	1.0	1.0						

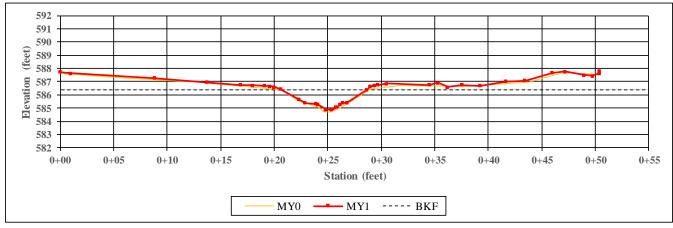

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:2Station: 8+05

Reach Name: UT2-2 XS Type: RU

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	3.0	5.6						
Floodprone Width (ft)	15.2	15.2						
Bankfull Mean Depth (ft)	0.4	0.5						
Bankfull Max Depth (ft)	0.6	0.9						
Bankfull Cross-Sectional Area (ft2)	1.1	2.7						
Width/Depth Ratio	7.9	11.5						
Entrenchment Ratio	5.1	2.7						
Bank Height Ratio	1.0	1.0						

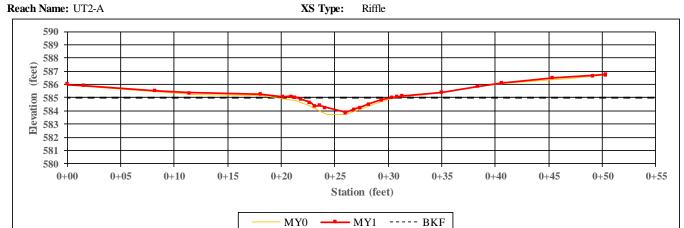

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:3Station:1+22

Reach Name: UT2-A XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	8.2	8.0						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.0	0.8						
Bankfull Max Depth (ft)	1.7	1.5						
Bankfull Cross-Sectional Area (ft ²)	7.9	6.7						
Width/Depth Ratio	8.5	9.5						
Entrenchment Ratio	6.1	6.3						
Bank Height Ratio	1.0	1.0						

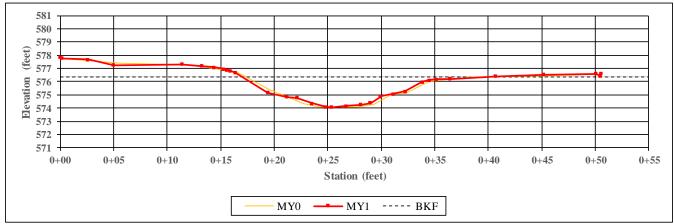


Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:4Station:2+62

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	11.0	8.8						
Floodprone Width (ft)	44.4	44.4						
Bankfull Mean Depth (ft)	0.7	0.6						
Bankfull Max Depth (ft)	1.3	1.1						
Bankfull Cross-Sectional Area (ft ²)	7.4	5.0						
Width/Depth Ratio	16.4	15.6						
Entrenchment Ratio	4.0	5.0						
Bank Height Ratio	1.0	1.0						

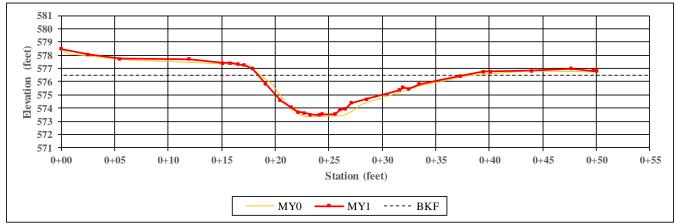

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:5Station:13+48

Reach Name: UT2-2 XS Type: Run

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	21.0	21.8						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.3	1.2						
Bankfull Max Depth (ft)	2.2	2.2						
Bankfull Cross-Sectional Area (ft ²)	26.5	25.3						
Width/Depth Ratio	16.6	18.8						
Entrenchment Ratio	2.4	2.3						
Bank Height Ratio	1.0	1.0						

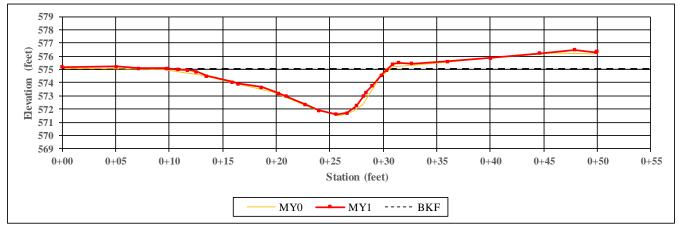

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:6Station:13+83

Reach Name: UT2-2 XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	19.6	19.1						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.7	1.6						
Bankfull Max Depth (ft)	3.1	3.0						
Bankfull Cross-Sectional Area (ft ²)	32.6	30.0						
Width/Depth Ratio	11.7	12.2						
Entrenchment Ratio	2.6	2.6						
Bank Height Ratio	1.0	1.0						

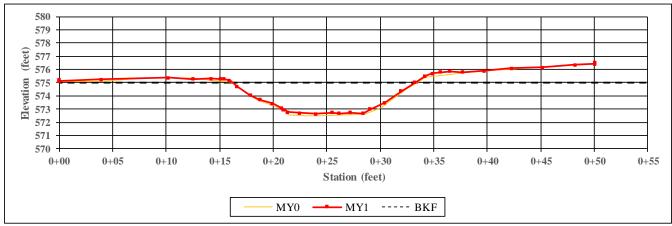

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:7Station:20+06

Reach Name: UT2-4 XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	21.1	19.8						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.6	1.6						
Bankfull Max Depth (ft)	3.5	3.4						
Bankfull Cross-Sectional Area (ft ²)	34.4	32.0						
Width/Depth Ratio	12.9	12.2						
Entrenchment Ratio	2.4	2.5						
Bank Height Ratio	1.0	1.0						

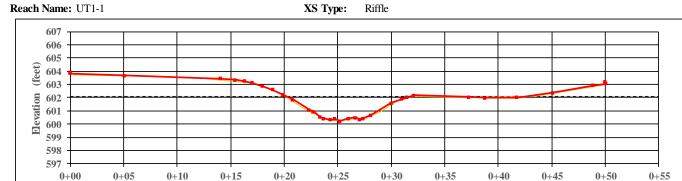

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:8Station:20+39

Reach Name: UT2-4 XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	17.4	17.1						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.8	1.7						
Bankfull Max Depth (ft)	2.5	2.4						
Bankfull Cross-Sectional Area (ft ²)	30.8	28.4						
Width/Depth Ratio	9.8	10.3						
Entrenchment Ratio	2.9	2.9						
Bank Height Ratio	1.0	1.0						


Left Descending Bank

Right Descending Bank

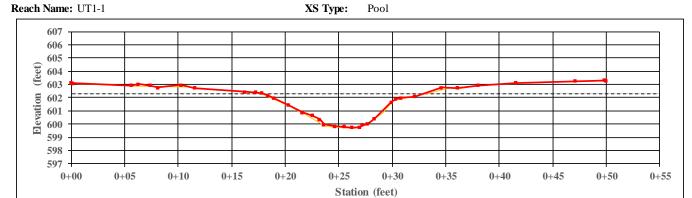
Project Name: Poplin RidgeXS Number:9Station:8+53

MY0

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	11.7	11.4						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.1	1.1						
Bankfull Max Depth (ft)	1.8	1.8						
Bankfull Cross-Sectional Area (ft ²)	13.0	12.1						
Width/Depth Ratio	10.4	10.7						
Entrenchment Ratio	4.3	4.4						
Bank Height Ratio	1.0	1.0						

Station (feet)

− MY1 ----- BKF


Left Descending Bank

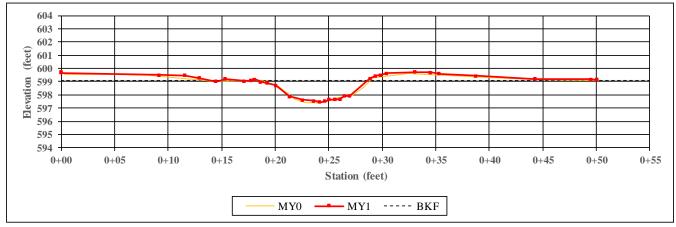
Right Descending Bank

Project Name: Poplin RidgeXS Number:10Station:8+78

MY0

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	15.2	14.7						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.4	1.3						
Bankfull Max Depth (ft)	2.6	2.5						
Bankfull Cross-Sectional Area (ft ²)	21.0	19.8						
Width/Depth Ratio	11.1	10.9						
Entrenchment Ratio	3.3	3.4						
Bank Height Ratio	1.0	1.0						

− MY1 ----- BKF

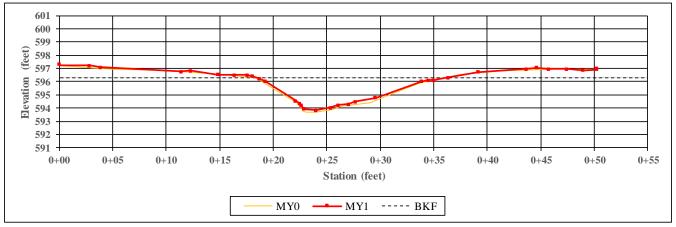

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:11Station:1+95

Reach Name: UT1-A XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	10.0	10.2						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.0	1.0						
Bankfull Max Depth (ft)	1.7	1.6						
Bankfull Cross-Sectional Area (ft ²)	10.5	10.1						
Width/Depth Ratio	9.6	10.3						
Entrenchment Ratio	5.0	4.9						
Bank Height Ratio	1.0	1.0						

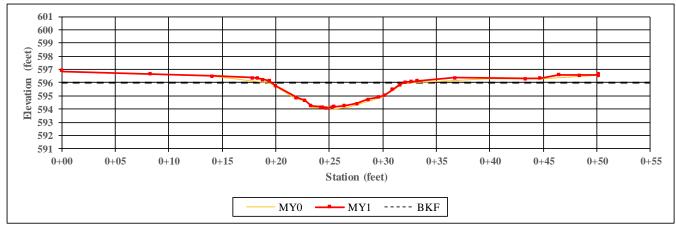

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:12Station:14+30

Reach Name: UT1-A XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	17.4	17.4						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.4	1.3						
Bankfull Max Depth (ft)	2.5	2.4						
Bankfull Cross-Sectional Area (ft ²)	24.4	21.8						
Width/Depth Ratio	12.4	13.9						
Entrenchment Ratio	2.9	2.9						
Bank Height Ratio	1.0	1.0						

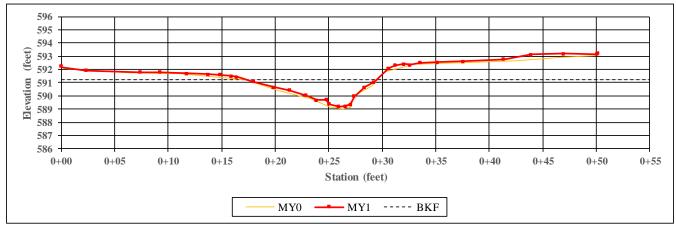

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:13Station:14+58

Reach Name: UT1-2 XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	12.5	12.2						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.2	1.2						
Bankfull Max Depth (ft)	1.9	1.9						
Bankfull Cross-Sectional Area (ft ²)	15.6	14.4						
Width/Depth Ratio	10.0	10.4						
Entrenchment Ratio	4.0	4.1						
Bank Height Ratio	1.0	1.0						

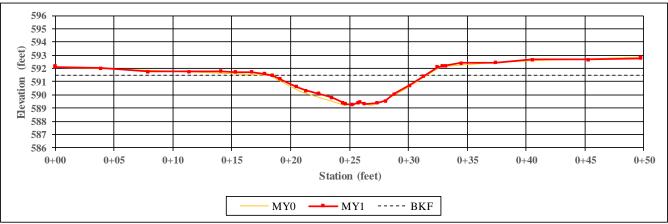

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:14Station:22+08

Reach Name: UT1-2 XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	12.3	12.0						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.1	1.0						
Bankfull Max Depth (ft)	2.2	2.0						
Bankfull Cross-Sectional Area (ft ²)	13.9	11.9						
Width/Depth Ratio	10.9	12.1						
Entrenchment Ratio	4.1	4.2						
Bank Height Ratio	1.0	1.0						

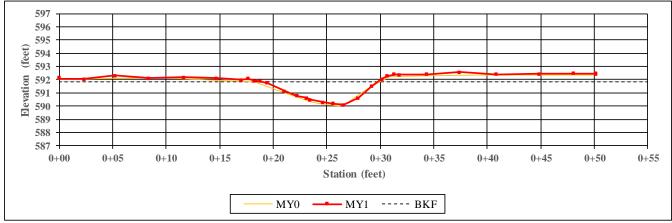

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:15Station:22+21

Reach Name: UT1-2 XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	13.4	12.9						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.4	1.3						
Bankfull Max Depth (ft)	2.3	2.2						
Bankfull Cross-Sectional Area (ft ²)	19.0	17.3						
Width/Depth Ratio	9.4	9.7						
Entrenchment Ratio	3.7	3.9						
Bank Height Ratio	1.0	1.0						

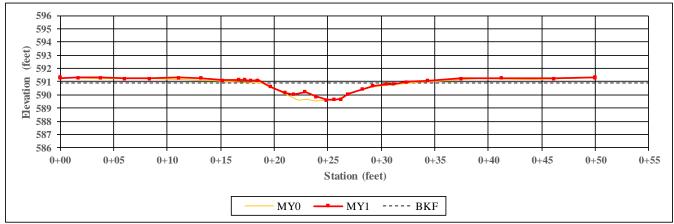

Left Descending Bank

Right Descending Bank

Project Name: Poplin Ridge XS Number: 16 Station:

Reach Name: UT1-B XS Type: Riffle 597

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	11.7	10.8						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.1	1.0						
Bankfull Max Depth (ft)	1.8	1.7						
Bankfull Cross-Sectional Area (ft ²)	12.3	11.2						
Width/Depth Ratio	11.2	10.4						
Entrenchment Ratio	4.3	4.6						
Bank Height Ratio	1.0	1.0						

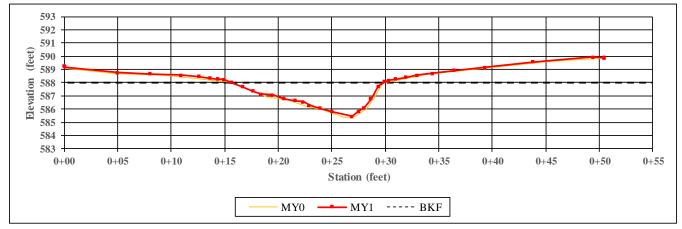

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:17Station:10+32

Reach Name: UT1-B XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	14.2	13.1						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	0.7	0.6						
Bankfull Max Depth (ft)	1.4	1.3						
Bankfull Cross-Sectional Area (ft ²)	10.2	8.5						
Width/Depth Ratio	19.7	20.2						
Entrenchment Ratio	3.5	3.8						
Bank Height Ratio	1.0	1.0						

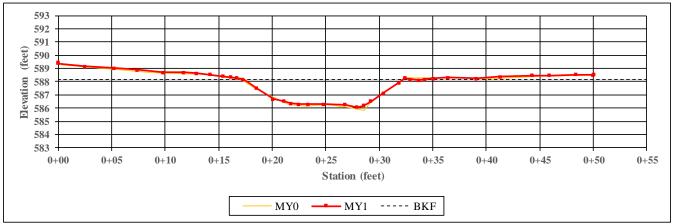

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:18Station:25+97

Reach Name: UT1-3 XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	14.5	14.3						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.5	1.4						
Bankfull Max Depth (ft)	2.6	2.6						
Bankfull Cross-Sectional Area (ft ²)	21.5	19.6						
Width/Depth Ratio	9.8	10.4						
Entrenchment Ratio	3.4	3.5						
Bank Height Ratio	1.0	1.0						

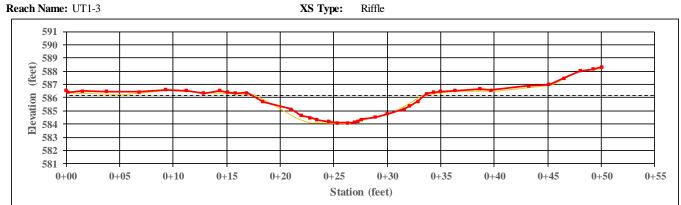

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:19Station:26+73

Reach Name: UT1-3 XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	15.2	15.1						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.5	1.4						
Bankfull Max Depth (ft)	2.4	2.1						
Bankfull Cross-Sectional Area (ft ²)	23.0	21.8						
Width/Depth Ratio	10.1	10.5						
Entrenchment Ratio	3.3	3.3						
Bank Height Ratio	1.0	1.0						


Left Descending Bank

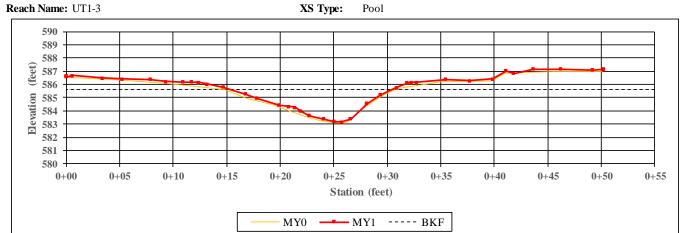
Right Descending Bank

Project Name: Poplin RidgeXS Number:20Station:30+13

MY0

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	15.5	16.1						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.4	1.3						
Bankfull Max Depth (ft)	2.1	2.1						
Bankfull Cross-Sectional Area (ft ²)	21.9	20.9						
Width/Depth Ratio	11.0	12.4						
Entrenchment Ratio	3.2	3.1						
Bank Height Ratio	1.0	1.0						

− MY1 ----- BKF

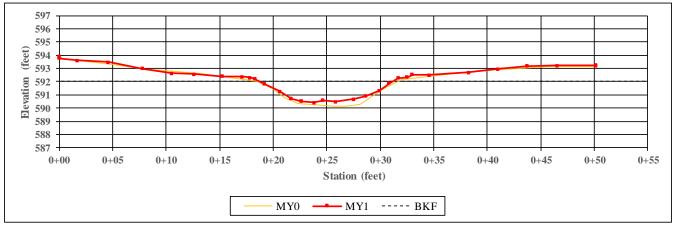


Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:21Station:31+77

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	15.8	15.0						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.4	1.3						
Bankfull Max Depth (ft)	2.5	2.4						
Bankfull Cross-Sectional Area (ft ²)	21.4	19.1						
Width/Depth Ratio	11.7	11.8						
Entrenchment Ratio	3.2	3.3						
Bank Height Ratio	1.0	1.0						

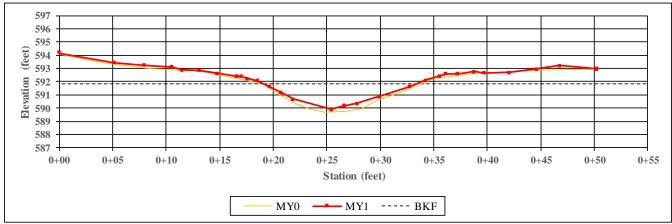

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:22Station:1+46

Reach Name: UT1-C XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	13.2	12.5						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.3	1.1						
Bankfull Max Depth (ft)	1.9	1.6						
Bankfull Cross-Sectional Area (ft ²)	16.8	13.6						
Width/Depth Ratio	10.4	11.5						
Entrenchment Ratio	3.8	4.0						
Bank Height Ratio	1.0	1.0						

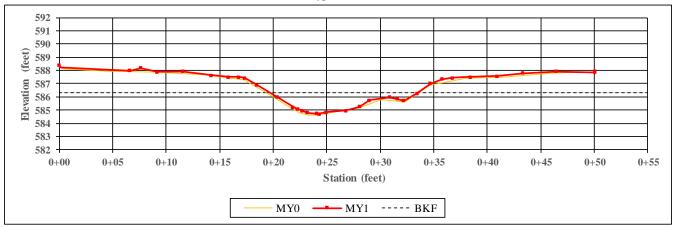

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:23Station:1+66

Reach Name: UT1-C XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	14.6	14.0						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.3	1.1						
Bankfull Max Depth (ft)	2.1	1.9						
Bankfull Cross-Sectional Area (ft ²)	19.1	14.8						
Width/Depth Ratio	11.1	13.3						
Entrenchment Ratio	3.4	3.6						
Bank Height Ratio	1.0	1.0						

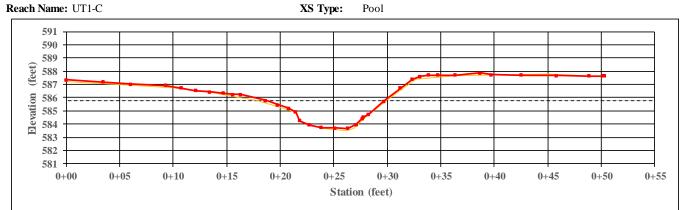

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:24Station:8+16

Reach Name: UT1-C XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	14.2	13.8						
Floodprone Width (ft)	46.6	46.6						
Bankfull Mean Depth (ft)	1.0	0.9						
Bankfull Max Depth (ft)	1.7	1.6						
Bankfull Cross-Sectional Area (ft ²)	14.0	12.2						
Width/Depth Ratio	14.3	15.6						
Entrenchment Ratio	3.3	3.4						
Bank Height Ratio	1.0	1.0						


Left Descending Bank

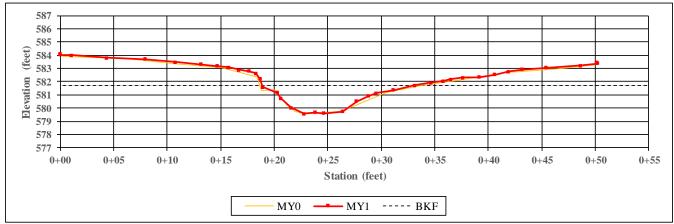
Right Descending Bank

Project Name: Poplin RidgeXS Number:25Station:8+39

MY0

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	12.0	11.1						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.3	1.3						
Bankfull Max Depth (ft)	2.3	2.1						
Bankfull Cross-Sectional Area (ft ²)	15.5	14.3						
Width/Depth Ratio	9.4	8.6						
Entrenchment Ratio	4.2	4.5						
Bank Height Ratio	1.0	1.0						

− MY1 ----- BKF

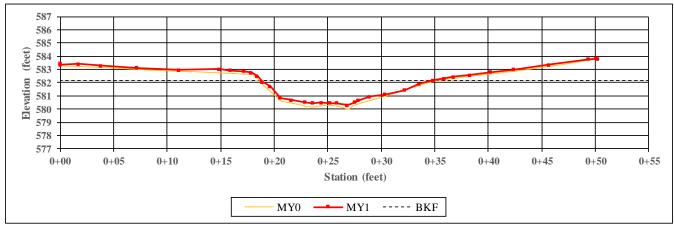

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:26Station:38+38

Reach Name: UT1-4 XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	14.8	14.1						
Floodprone Width (ft)	47.0	47.0						
Bankfull Mean Depth (ft)	1.2	1.2						
Bankfull Max Depth (ft)	2.1	2.1						
Bankfull Cross-Sectional Area (ft ²)	17.6	16.2						
Width/Depth Ratio	12.5	12.3						
Entrenchment Ratio	3.2	3.3						
Bank Height Ratio	1.0	1.0						

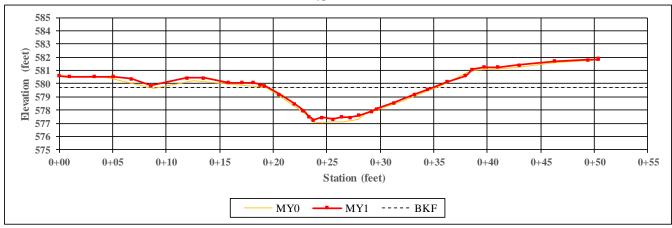

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:27Station:38+69

Reach Name: UT1-4 XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	16.5	15.9						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.3	1.2						
Bankfull Max Depth (ft)	2.1	1.9						
Bankfull Cross-Sectional Area (ft ²)	21.5	18.3						
Width/Depth Ratio	12.7	13.8						
Entrenchment Ratio	3.0	3.1						
Bank Height Ratio	1.0	1.0						

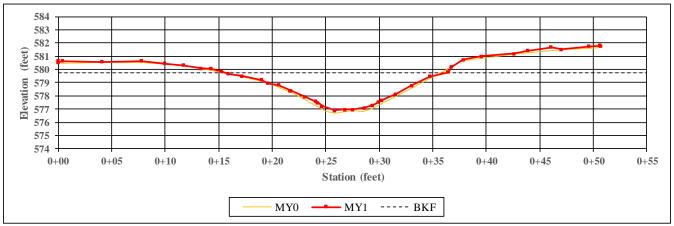

Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:28Station:45+20

Reach Name: UT1-4 XS Type: Riffle

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	15.9	15.4						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.5	1.4						
Bankfull Max Depth (ft)	2.6	2.5						
Bankfull Cross-Sectional Area (ft ²)	24.2	21.7						
Width/Depth Ratio	10.4	10.9						
Entrenchment Ratio	3.1	3.3						
Bank Height Ratio	1.0	1.0						


Left Descending Bank

Right Descending Bank

Project Name: Poplin RidgeXS Number:29Station:45+36

Reach Name: UT1-4 XS Type: Pool

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	20.3	20.8						
Floodprone Width (ft)	50.0	50.0						
Bankfull Mean Depth (ft)	1.6	1.4						
Bankfull Max Depth (ft)	3.1	2.9						
Bankfull Cross-Sectional Area (ft ²)	33.2	30.0						
Width/Depth Ratio	12.5	14.4						
Entrenchment Ratio	2.5	2.4						
Bank Height Ratio	1.0	1.0						

Left Descending Bank

Right Descending Bank

Cross Section 3 - Riffle

Monitoring Year - 2015; MY1

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	88	81.5%	81%
0.062 - 0.125	0	0.0%	81%
0.125 - 0.25	0	0.0%	81%
0.25 - 0.5	0	0.0%	81%
0.5 - 1.0	2	1.9%	83%
1 - 2	6	5.6%	89%
2 - 4	0	0.0%	89%
4 - 8	3	2.8%	92%
8 - 16	8	7.4%	99%
16 - 32	0	0.0%	99%
32 - 64	0	0.0%	99%
64-128	1	0.9%	100%
128-256	0	0.0%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	108	100%	100%

 Summary Data

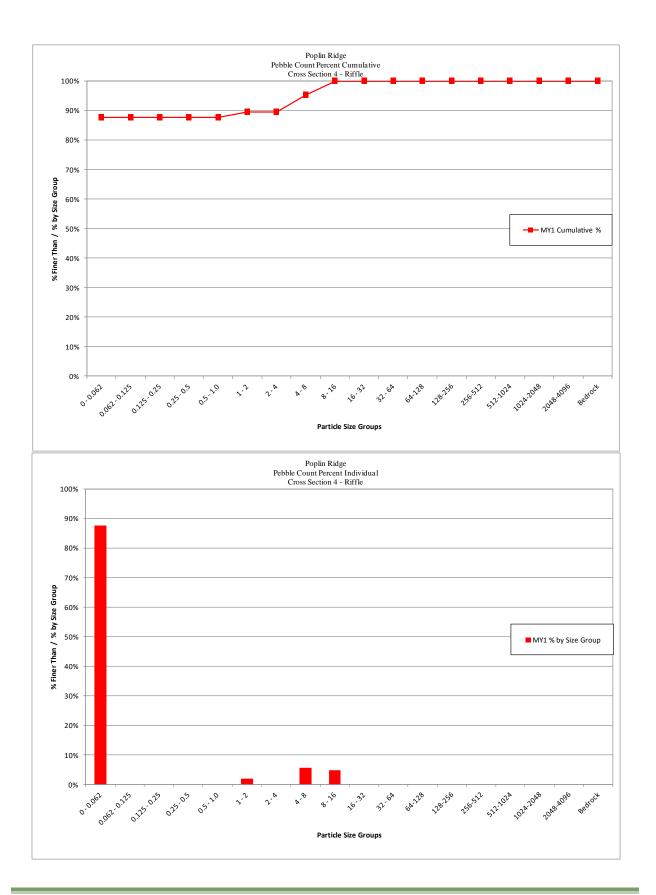
 D50
 0.062

 D84
 1.1

 D95
 12

Cross Section 4 - Riffle

Monitoring Year - 2015; MY1

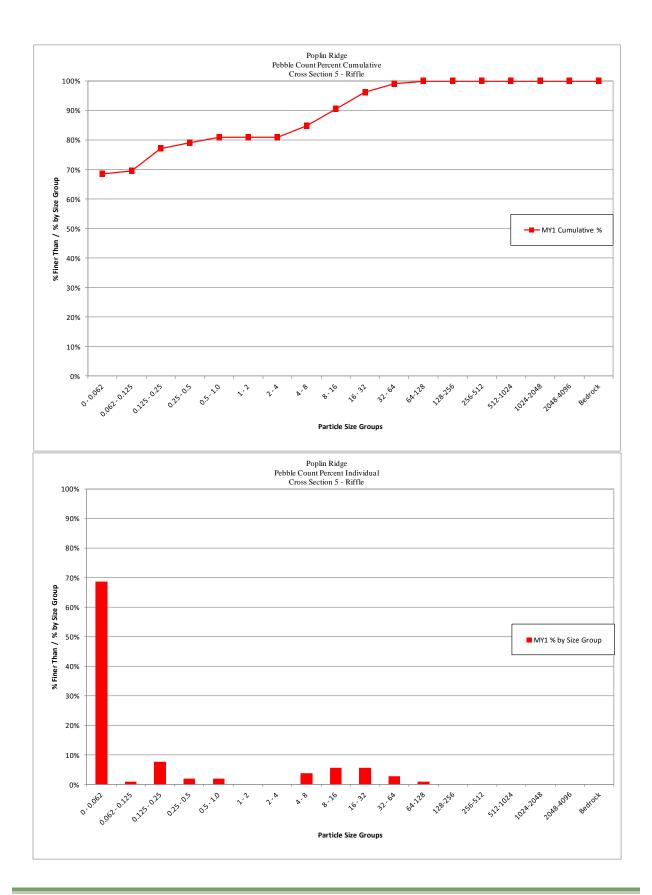

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	92	87.6%	88%
0.062 - 0.125	0	0.0%	88%
0.125 - 0.25	0	0.0%	88%
0.25 - 0.5	0	0.0%	88%
0.5 - 1.0	0	0.0%	88%
1 - 2	2	1.9%	90%
2 - 4	0	0.0%	90%
4 - 8	6	5.7%	95%
8 - 16	5	4.8%	100%
16 - 32	0	0.0%	100%
32 - 64	0	0.0%	100%
64-128	0	0.0%	100%
128-256	0	0.0%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	105	100%	100%

 Summary Data

 D50
 0.062

 D84
 0.062

 D95
 7.9

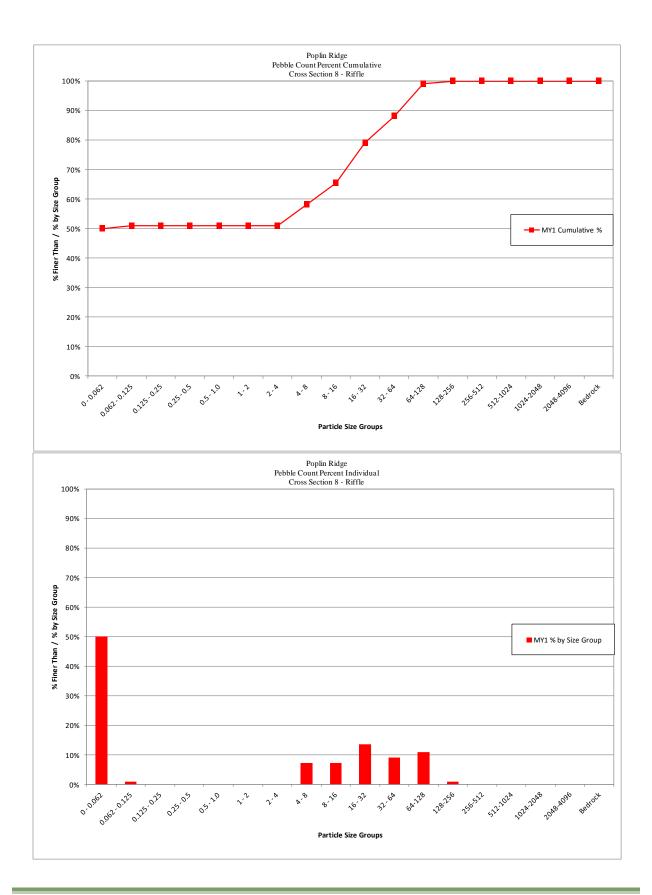


Cross Section 5 - Riffle

Monitoring Year - 2015; MY1

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	72	68.6%	69%
0.062 - 0.125	1	1.0%	70%
0.125 - 0.25	8	7.6%	77%
0.25 - 0.5	2	1.9%	79%
0.5 - 1.0	2	1.9%	81%
1 - 2	0	0.0%	81%
2 - 4	0	0.0%	81%
4 - 8	4	3.8%	85%
8 - 16	6	5.7%	90%
16 - 32	6	5.7%	96%
32 - 64	3	2.9%	99%
64-128	1	1.0%	100%
128-256	0	0.0%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	105	100%	100%

Summary Data				
D50	0.062			
D84	6.4			
D95	22			



Cross Section 8 - Riffle

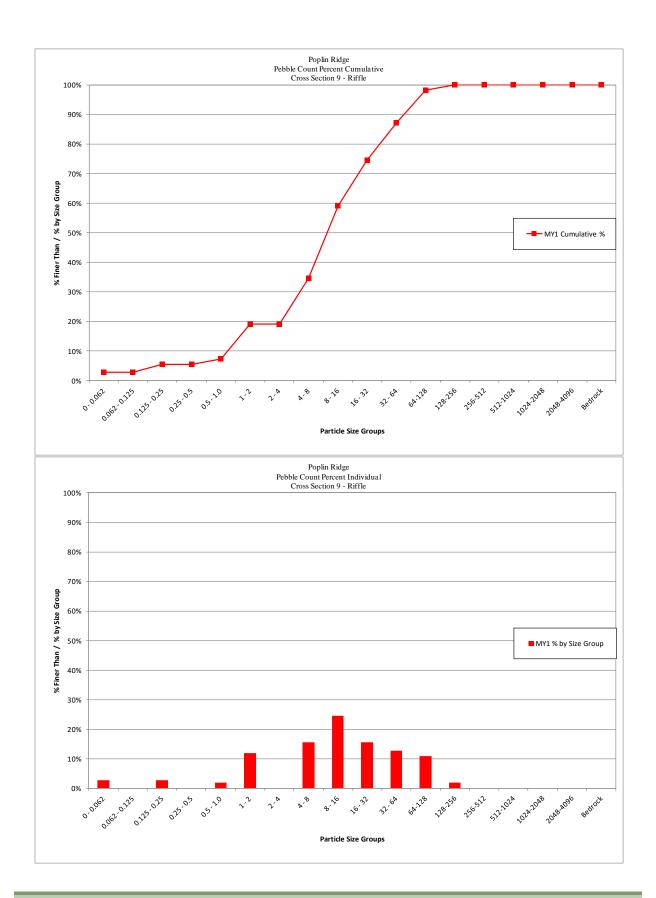
Monitoring Year - 2015; MY1

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	55	50.0%	50%
0.062 - 0.125	1	0.9%	51%
0.125 - 0.25	0	0.0%	51%
0.25 - 0.5	0	0.0%	51%
0.5 - 1.0	0	0.0%	51%
1 - 2	0	0.0%	51%
2 - 4	0	0.0%	51%
4 - 8	8	7.3%	58%
8 - 16	8	7.3%	65%
16 - 32	15	13.6%	79%
32 - 64	10	9.1%	88%
64-128	12	10.9%	99%
128-256	1	0.9%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	110	100%	100%

Summary Data				
D50	0.062			
D84	42			
D95	85			

Cross Section 9 - Riffle

Monitoring Year - 2015; MY1


Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	3	2.7%	3%
0.062 - 0.125	0	0.0%	3%
0.125 - 0.25	3	2.7%	5%
0.25 - 0.5	0	0.0%	5%
0.5 - 1.0	2	1.8%	7%
1 - 2	13	11.8%	19%
2 - 4	0	0.0%	19%
4 - 8	17	15.5%	35%
8 - 16	27	24.5%	59%
16 - 32	17	15.5%	75%
32 - 64	14	12.7%	87%
64-128	12	10.9%	98%
128-256	2	1.8%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	110	100%	100%

 Summary Data

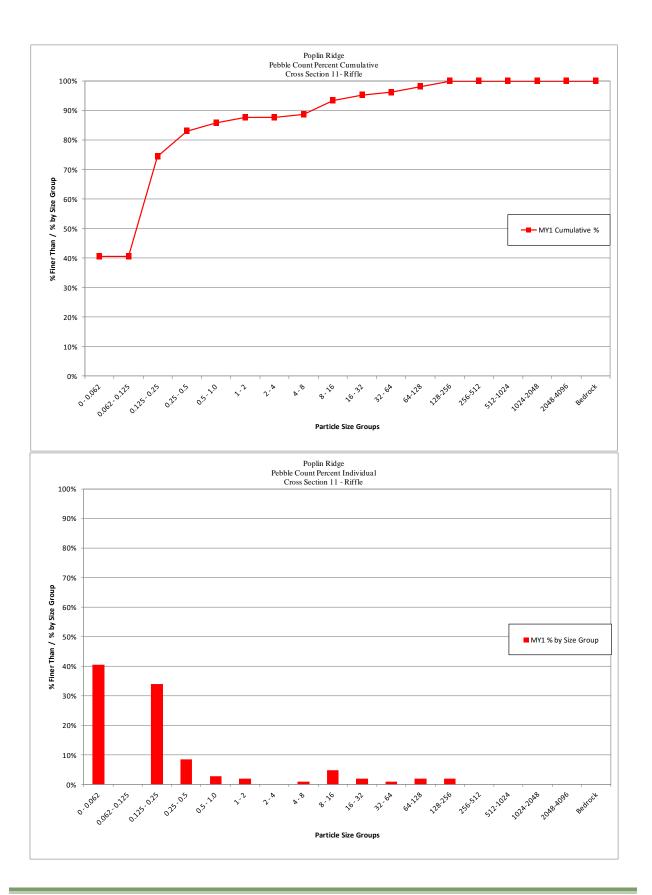
 D50
 13

 D84
 43

 D95
 110

Cross Section 11 - Riffle

Monitoring Year - 2015; MY1

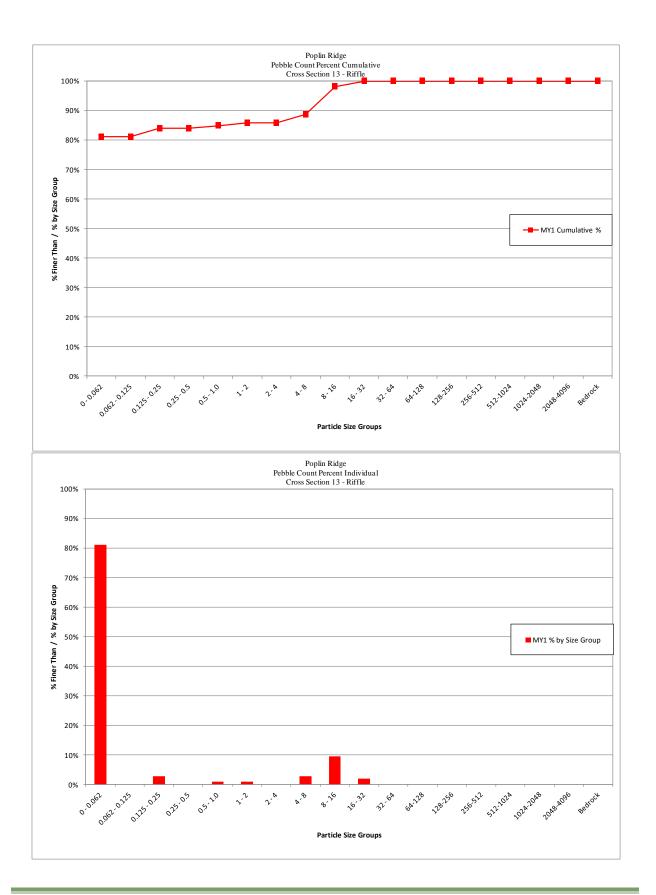

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	43	40.6%	41%
0.062 - 0.125	0	0.0%	41%
0.125 - 0.25	36	34.0%	75%
0.25 - 0.5	9	8.5%	83%
0.5 - 1.0	3	2.8%	86%
1 - 2	2	1.9%	88%
2 - 4	0	0.0%	88%
4 - 8	1	0.9%	89%
8 - 16	5	4.7%	93%
16 - 32	2	1.9%	95%
32 - 64	1	0.9%	96%
64-128	2	1.9%	98%
128-256	2	1.9%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	106	100%	100%

 Summary Data

 D50
 0.15

 D84
 0.64

 D95
 30



Cross Section 13 - Riffle

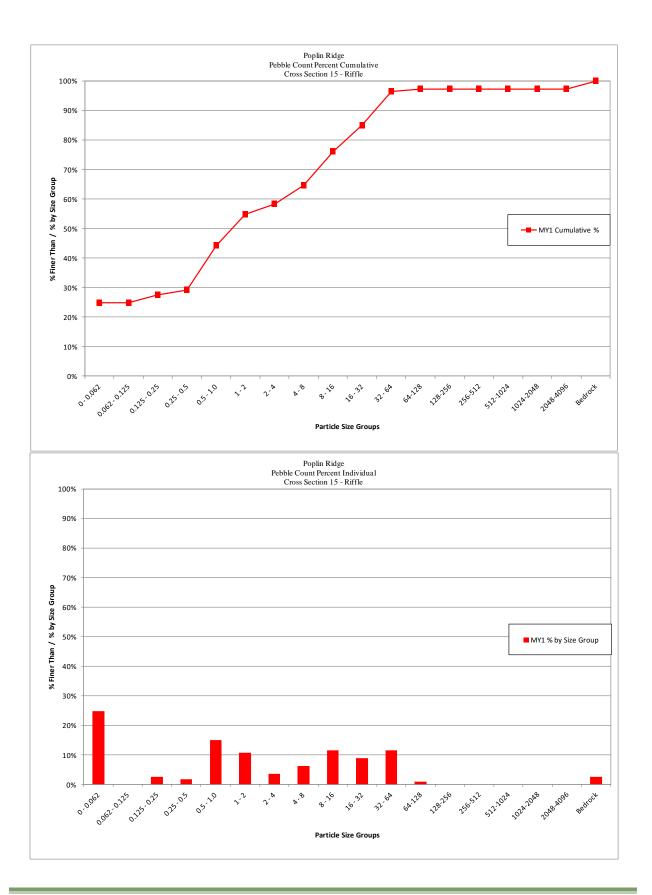
Monitoring Year - 2015; MY1

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	86	81.1%	81%
0.062 - 0.125	0	0.0%	81%
0.125 - 0.25	3	2.8%	84%
0.25 - 0.5	0	0.0%	84%
0.5 - 1.0	1	0.9%	85%
1 - 2	1	0.9%	86%
2 - 4	0	0.0%	86%
4 - 8	3	2.8%	89%
8 - 16	10	9.4%	98%
16 - 32	2	1.9%	100%
32 - 64	0	0.0%	100%
64-128	0	0.0%	100%
128-256	0	0.0%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	106	100%	100%

Summary Data			
D50	0.062		
D84	0.51		
D95	12		

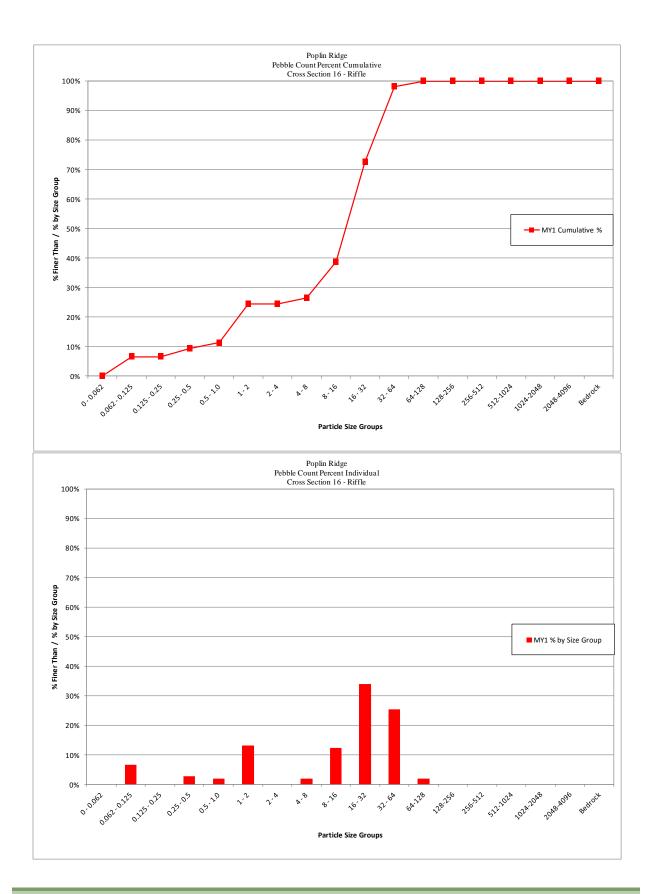
Cross Section 15 - Riffle

Monitoring Year - 2015; MY1


Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	28	24.8%	25%
0.062 - 0.125	0	0.0%	25%
0.125 - 0.25	3	2.7%	27%
0.25 - 0.5	2	1.8%	29%
0.5 - 1.0	17	15.0%	44%
1 - 2	12	10.6%	55%
2 - 4	4	3.5%	58%
4 - 8	7	6.2%	65%
8 - 16	13	11.5%	76%
16 - 32	10	8.8%	85%
32 - 64	13	11.5%	96%
64-128	1	0.9%	97%
128-256	0	0.0%	97%
256-512	0	0.0%	97%
512-1024	0	0.0%	97%
1024-2048	0	0.0%	97%
2048-4096	0	0.0%	97%
Bedrock	3	2.7%	100%
Total	113	100%	100%

 Summary Data

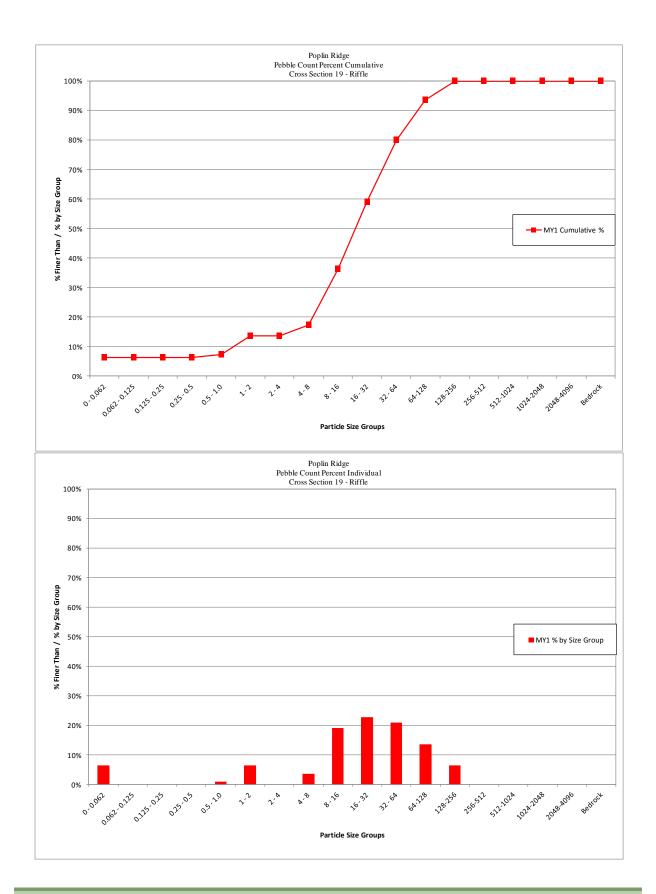
 D50
 1.3


 D84
 24

 D95
 43

Poplin Ridge Cross Section 16 - Riffle Monitoring Year - 2015; MY1 **Bed Surface Material** % % Cumulative Particle Size Class (mm) Number **Individual** 0 - 0.062 0 0.0% 0% 7 6.6% 7% 0.062 - 0.125 0 0.0% 7% 0.125 - 0.253 9% 0.25 - 0.52.8% 2 0.5 - 1.01.9% 11% 14 1 - 2 13.2% 25% 0 2 - 4 0.0% 25% 2 4 - 8 1.9% 26% 8 - 16 13 12.3% 39% 16 - 32 36 34.0% 73% 32 - 64 27 25.5% 98% 64-128 2 1.9% 100% 128-256 0 0.0% 100% 0 256-512 0.0% 100% 512-1024 0 0.0% 100% 0 100% 1024-2048 0.0% 2048-4096 0 0.0% 100% 0 100% 0.0% Bedrock **Total** 106 100% 100%

Summary Data		
D50	23	
D84	42	
D95	58	



Poplin Ridge Cross Section 19 - Riffle

Monitoring	Year -	2015; MY1

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	7	6.4%	6%
0.062 - 0.125	0	0.0%	6%
0.125 - 0.25	0	0.0%	6%
0.25 - 0.5	0	0.0%	6%
0.5 - 1.0	1	0.9%	7%
1 - 2	7	6.4%	14%
2 - 4	0	0.0%	14%
4 - 8	4	3.6%	17%
8 - 16	21	19.1%	36%
16 - 32	25	22.7%	59%
32 - 64	23	20.9%	80%
64-128	15	13.6%	94%
128-256	7	6.4%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	110	100%	100%

Summary Data		
D50	24	
D84	77	
D95	150	

Poplin Ridge Cross Section 20 - Riffle Monitoring Year - 2015; MY1 **Bed Surface Material** % % Cumulative Particle Size Class (mm) Number **Individual** 0 - 0.062 4 3.7% 4% 0 0.0% 4% 0.062 - 0.125 2 1.9% 6% 0.125 - 0.253 0.25 - 0.52.8% 8% 0.5 - 1.04 3.7% 12% 2 1.9% 1 - 2 14% 2 - 4 1 0.9% 15% 4 - 8 1 0.9% 16% 8 - 16 16 15.0% 31% 16 - 32 37 34.6% 65% 32 - 64 28 26.2% 92%

7

0

0

0

0

0

107

6.5%

0.0%

0.0%

0.0%

0.0%

0.0%

1.9%

 100%
 100%

 Summary Data

 D50
 23

 D84
 48

 D95
 70

98%

98%

98%

98%

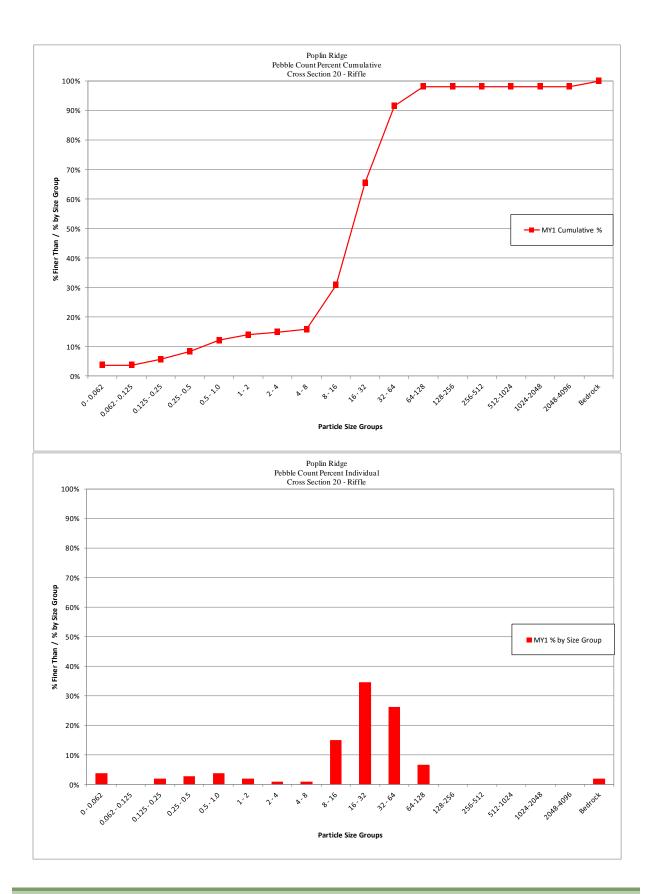
98%

98%

100%

64-128

128-256

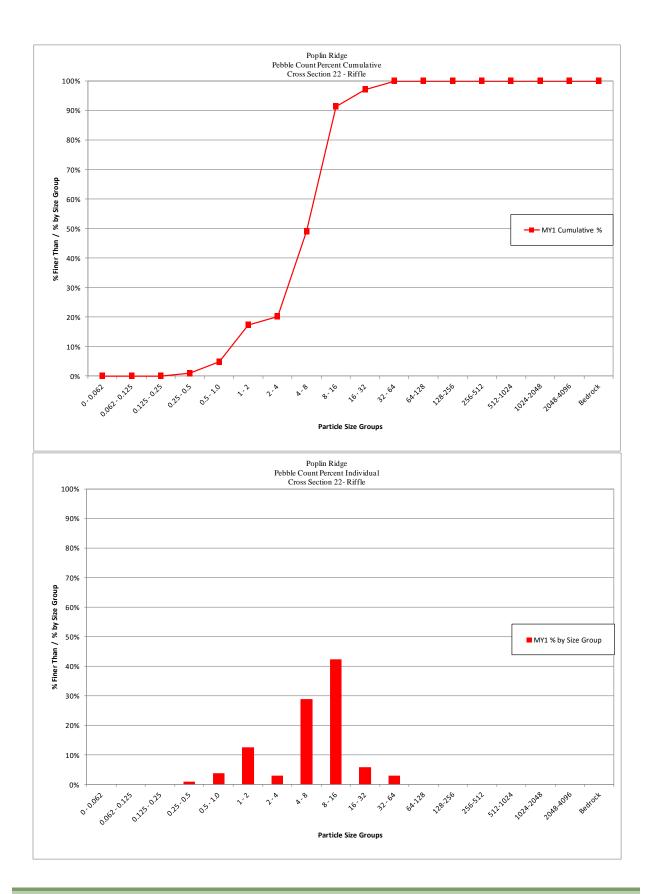

256-512

512-1024

1024-2048

2048-4096

Bedrock Total

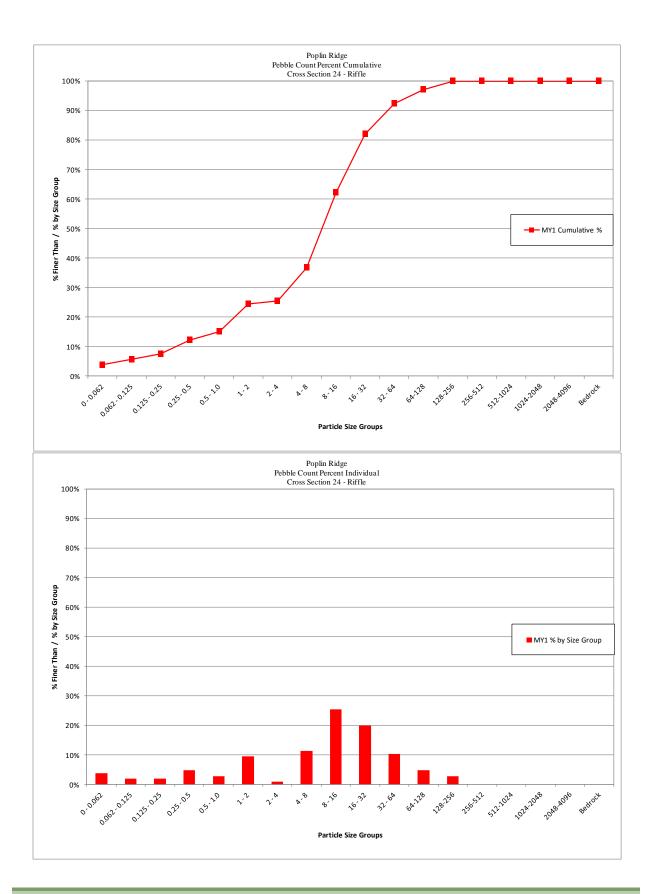


Cross Section 22 - Riffle

Monitoring Year - 2015; MY1

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	0	0.0%	0%
0.062 - 0.125	0	0.0%	0%
0.125 - 0.25	0	0.0%	0%
0.25 - 0.5	1	1.0%	1%
0.5 - 1.0	4	3.8%	5%
1 - 2	13	12.5%	17%
2 - 4	3	2.9%	20%
4 - 8	30	28.8%	49%
8 - 16	44	42.3%	91%
16 - 32	6	5.8%	97%
32 - 64	3	2.9%	100%
64-128	0	0.0%	100%
128-256	0	0.0%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	104	100%	100%

Summary Data		
D50	8.1	
D84	13	
D95	24	



Cross Section 24 - Riffle

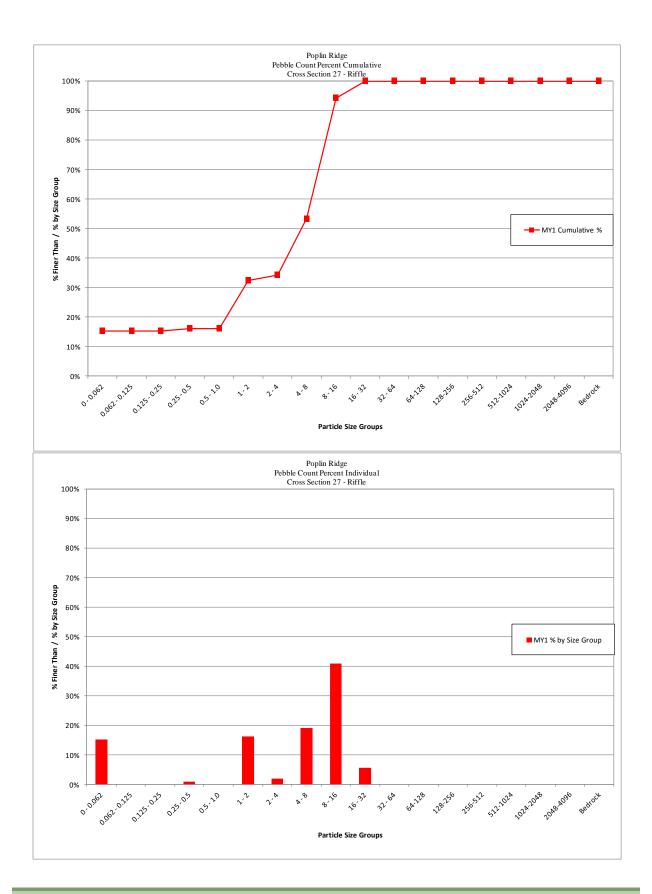
Monitoring Year - 2015; MY1

Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	4	3.8%	4%
0.062 - 0.125	2	1.9%	6%
0.125 - 0.25	2	1.9%	8%
0.25 - 0.5	5	4.7%	12%
0.5 - 1.0	3	2.8%	15%
1 - 2	10	9.4%	25%
2 - 4	1	0.9%	25%
4 - 8	12	11.3%	37%
8 - 16	27	25.5%	62%
16 - 32	21	19.8%	82%
32 - 64	11	10.4%	92%
64-128	5	4.7%	97%
128-256	3	2.8%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	106	100%	100%

Summary Data			
D50	11		
D84	35		
D95	77		

Cross Section 27 - Riffle

Monitoring Year - 2015; MY1


Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	16	15.2%	15%
0.062 - 0.125	0	0.0%	15%
0.125 - 0.25	0	0.0%	15%
0.25 - 0.5	1	1.0%	16%
0.5 - 1.0	0	0.0%	16%
1 - 2	17	16.2%	32%
2 - 4	2	1.9%	34%
4 - 8	20	19.0%	53%
8 - 16	43	41.0%	94%
16 - 32	6	5.7%	100%
32 - 64	0	0.0%	100%
64-128	0	0.0%	100%
128-256	0	0.0%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	105	100%	100%

 Summary Data

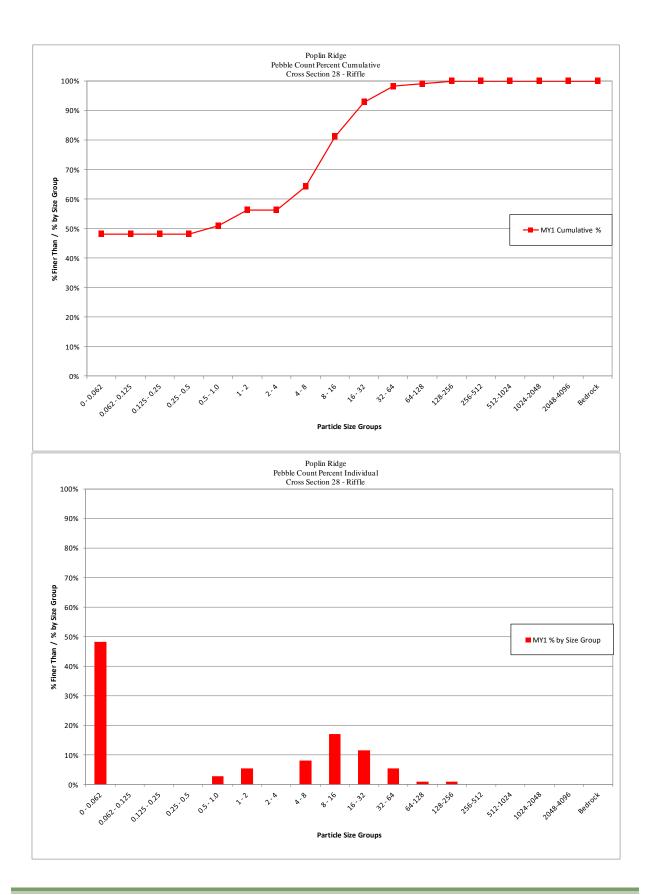
 D50
 7.2

 D84
 13

 D95
 17

Cross Section 28 - Riffle

Monitoring Year - 2015; MY1


Bed Surface Material		%	%
Particle Size Class (mm)	Number	Individual	Cumulative
0 - 0.062	54	48.2%	48%
0.062 - 0.125	0	0.0%	48%
0.125 - 0.25	0	0.0%	48%
0.25 - 0.5	0	0.0%	48%
0.5 - 1.0	3	2.7%	51%
1 - 2	6	5.4%	56%
2 - 4	0	0.0%	56%
4 - 8	9	8.0%	64%
8 - 16	19	17.0%	81%
16 - 32	13	11.6%	93%
32 - 64	6	5.4%	98%
64-128	1	0.9%	99%
128-256	1	0.9%	100%
256-512	0	0.0%	100%
512-1024	0	0.0%	100%
1024-2048	0	0.0%	100%
2048-4096	0	0.0%	100%
Bedrock	0	0.0%	100%
Total	112	100%	100%

 Summary Data

 D50
 0.79

 D84
 18

 D95
 47

Table 12. Bank Pin Arrays Poplin Ridge Stream Restoration Site								
A	Length of Exposed Pin (mm)							
Array # and Reach	Upper	Middle	Lower	Average Rate ¹ (mm/yr)	Rate (ft/yr)			
1 - Reach UT2-2	0	0_{B}	0_{B}	0	0.00			
2 - Reach UT2-3	0	0	0	0	0.00			
3 - Reach UT1-2	0	0_{B}	0_{B}	0.0	0.00			
4 - Reach UT1-3	44.5	92.3	31.8	112.4	0.37			
5 - Reach UT1-C	0	0	139.7	93.1	0.31			
6 - Reach UT1-4	0	0	108.0	72	0.24			

^{0&}lt;sup>B</sup>= Buried Bank Pin

¹ Rate based on 6 month span since installation and data collection

Appendix E Hydrologic Data

This Page Intentionally Left Blank

Table 13. Verification of Bankfull Events Poplin Ridge Stream Restoration Site								
Date of Data Collection	Date of Occurrence	Method	Feet Above Bankfull Elevation	Photo # (if available)				
UT1-2	Date of Occurrence	Method	Lie vation	(II available)				
10/14/2015	8/19/2015	Automated Crest Gauge	0.5					
UT1-4								
10/15/2015	8/19/2015	Automated Crest Gauge	2.0					
10/15/2015	10/3/2015	Automated Crest Gauge	1.0					
UT2-3								
10/13/2015	8/19/2015	Automated Crest Gauge	4.3					
10/13/2015	10/3/2015	Automated Crest Gauge	1.2					

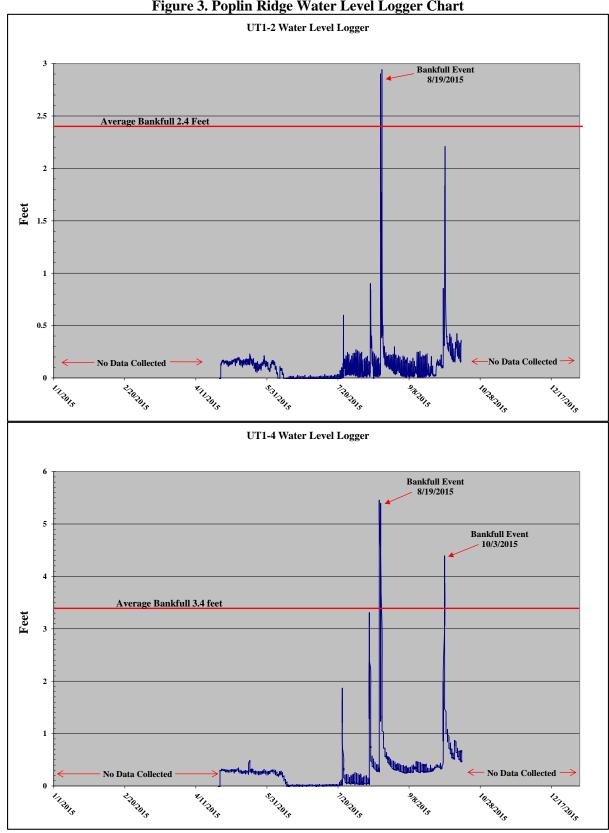


Figure 3. Poplin Ridge Water Level Logger Chart

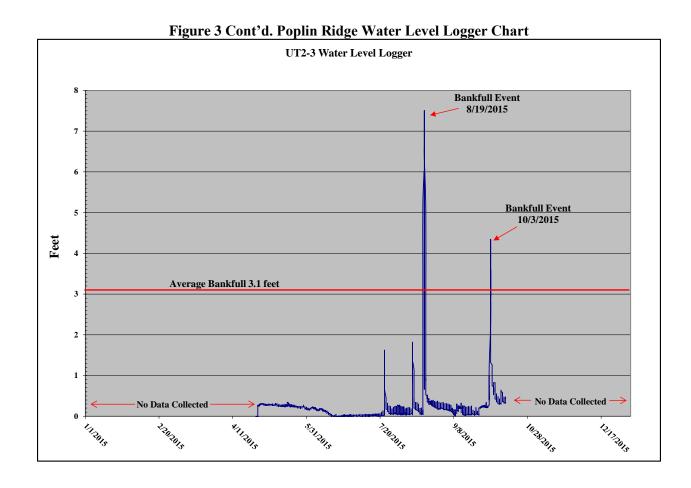


Figure 4. Daily Precipitation Totals for Monroe, NC (CRONOS Station 315771/ Monroe 2 Se)

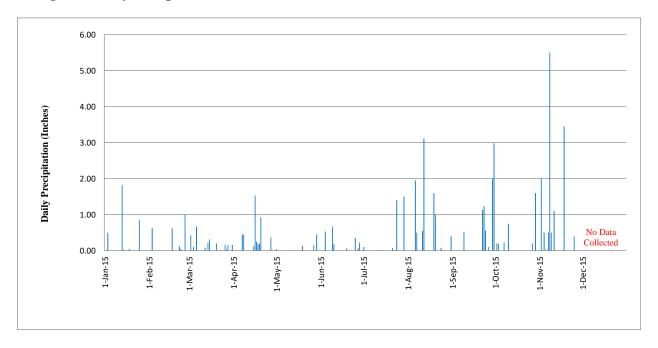
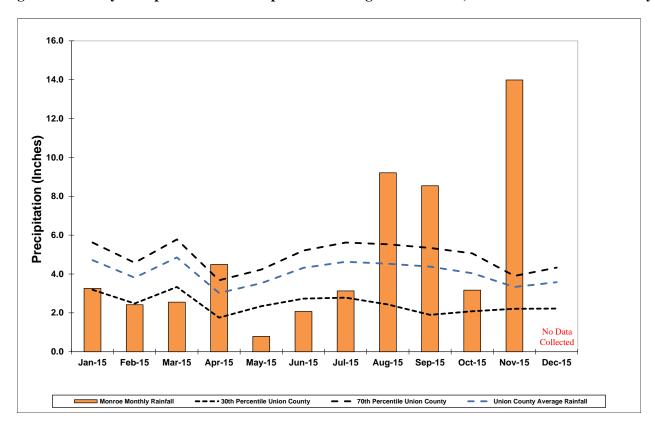



Figure 5. Monthly Precipitation Data Compared to Average. 30th and 70th, Percentiles for Union County

